Inicio  /  Agriculture  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai?Tibetan Plateau

Jiujin Lu    
Yunzhang Xu    
Haiyan Sheng    
Yajun Gao    
Jim Moir    
Rong Zhang and Shouzhong Xie    

Resumen

Wolfberry production has become a major agro-industry on the Qinghai?Tibetan Plateau, causing increased nitrogen (N) pollution and greenhouse gas (GHG) emissions. Appropriate N fertilizer rate and nitrification inhibitors may mitigate GHG emissions and improve N use efficiency. A 2-year field experiment was conducted to measure the effects of N application rate and nitrapyrin on GHG emissions, to reduce GHG emissions and N pollution. We used eight treatments: Control (CK), 667 kg·ha-1 N (Con), 400 kg·ha-1 N (N400), 267 kg·ha-1 N (N267), 133 kg·ha-1 N (N133), 400 kg·ha-1 N plus 2.00 kg·ha-1 nitrapyrin (N400I2.00), 267 kg·ha-1 N plus 1.33 kg·ha-1 nitrapyrin (N267I1.33) and 133 kg·ha-1 N plus 0.67 kg·ha-1 nitrapyrin (N133I0.67). Compared with Con treatment, N400 maintained fruit yield and increased net income, but saved 40% of N fertilizer and decreased the cumulative N2O emission by 14?16%. Compared to N400, N267 and N133 treatments, the cumulative N2O emission of N400I2.00, N267I1.33 and N133I0.67 treatments was reduced by 28.5?45.1%, 26.6?29.9% and 33.8?45.9%, respectively. Furthermore, N400I2.00 resulted in the highest wolfberry yield and net income. The emissions of CH4 and CO2 were not significantly different among treatments. Moreover, the global warming potential (GWP) and the greenhouse gas emission intensity (GHGI) of N400I2.00 declined by 45.6% and 48.6% compared to Con treatment. Therefore, 400 kg·ha-1 N combined with 2.00 kg·ha-1 nitrapyrin was shown to be a promising management technique for maintaining wolfberry yield while minimizing GWP and GHGI.

 Artículos similares

       
 
Xianxian Zhang, Junguo Bi, Weikang Wang, Donglai Sun, Huifeng Sun, Qingyu Bi, Cong Wang, Jining Zhang, Sheng Zhou and Lijun Luo    
Developing tailored emission reduction strategies and estimating their potential is crucial for achieving low-carbon rice production in a specific region, as well as for advancing China?s dual carbon goals in the agricultural sector. By utilizing water-s... ver más
Revista: Agronomy

 
Haining Wu, Shufang Chen, Zhipeng Huang, Tangwei Huang, Xiumei Tang, Liangqiong He, Zhong Li, Jun Xiong, Ruichun Zhong, Jing Jiang, Zhuqiang Han and Ronghua Tang    
The intercropping of peanuts and sugarcane is a sustainable planting model that deserves in-depth research. For this study, two variables, i.e., intercropping status (peanut monocropping or sugarcane/peanut intercropping) and the level of nitrogen fertil... ver más
Revista: Agronomy

 
Yi Lu, Jingli Xu, Zhenyu Liu, Yuan Chen, Xiang Zhang and Dehua Chen    
The direct-sown cotton after wheat harvest (DSCWH) cropping system has attracted wide attention due to reduced labor inputs compared to transplanting. However, the management strategy of slow-release nitrogen is unclear in such a system. This study aims ... ver más
Revista: Agronomy

 
Yingliang Yu, Yafei Zhang, Bei Yang, Cong Qian, Yizhi Wang, Taifeng Chen, Xuemei Han, Linzhang Yang and Lihong Xue    
(1) Background: Excessive nitrogen (N) fertilizer application in tea plantations leads to challenges such as soil acidification and nitrogen loss, impending the sustainable development of the plantation system. Yet, there is a lack of research on blended... ver más
Revista: Agronomy

 
Weidan Lu, Zhiqiang Hao, Xiaolong Ma, Jianglong Gao, Xiaoqin Fan, Jianfu Guo, Jianqiang Li, Ming Lin and Yuanhang Zhou    
Organic fertilizer can improve soil management and alleviate soil nutrient loss caused by excessive fertilization. This study determines a fertilization scheme that can achieve high and stable crop yield and effective soil fertilization by exploring the ... ver más
Revista: Agronomy