Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

A Study on Welding Deformation Prediction for Ship Blocks Using the Equivalent Strain Method Based on Inherent Strain

Yongtai Kim    
Jaewoong Kim and Sungwook Kang    

Resumen

The welding process, which accounts for about 60% of the shipbuilding process, inevitably involves weld deformation. Considering this, productivity can be significantly increased if weld deformation can be predicted during the design phase, taking into account the fabrication order. However, the conventional welding deformation prediction method using thermo-elasto-plastic analysis requires a long analysis time, and the welding deformation prediction method using equivalent load analysis has a disadvantage in that the welding residual stress cannot be considered. In this study, an inherent strain chart using a solid-spring model with two-dimensional constraints is proposed to predict the equivalent strain. In addition, the welding deformation prediction method proposed in this study, the equivalent strain method (ESM), was compared with the ship block experimental results (EXP), elasto-plastic analysis (EPA) results, and equivalent load analysis (ELM) results. Through this comparison, it was found that the application of the equivalent strain method made it possible to quickly and accurately predict weld deformation in consideration of the residual stress of the curved double-bottom block used in the shipyard.

 Artículos similares

       
 
Hao Su, Monssef Drissi-Habti and Valter Carvelli    
This work is a follow-up to previous research by our team and is devoted to studying a dual-sinusoidal placement of distributed fiber-optic sensors (FOSs) that are embedded inside an adhesive joint between two composite laminates. The constructed smart c... ver más
Revista: Applied Sciences

 
Jiarun Tang and Dongxia Chen    
Granite residual soil (GRS) exhibits favorable engineering properties in its natural state. However, a hot and rainy climate, combined with vibrations generated during mechanical construction, can cause a notable decrease in its strength. In this study, ... ver más
Revista: Applied Sciences

 
Jun Wu, Wen Wang, Minghui Lu and Yu Hu    
A metal fatigue damage model is established in this study by employing real-time strain monitoring to evaluate the damage state of metal materials. The fatigue life simulation, based on crystal plasticity finite element analysis, establishes the constitu... ver más
Revista: Applied Sciences

 
Farhan Ahmad, Sanket Rawat and Yixia Zhang    
Magnesium oxychloride cement (MOC), an alternative to ordinary Portland cement (OPC), has attracted increasing research interest for its excellent mechanical properties and its green and sustainable attributes. The poor water resistance of MOC limited it... ver más
Revista: Applied Sciences

 
Alexey Liogky and Victoria Salamatova    
Data-driven simulations are gaining popularity in mechanics of biomaterials since they do not require explicit form of constitutive relations. Data-driven modeling based on neural networks lacks interpretability. In this study, we propose an interpretabl... ver más
Revista: Computation