Inicio  /  Applied Sciences  /  Vol: 13 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

A Robust Tool Condition Monitoring System Based on Cluster Density under Variable Machining Processes

Zhimeng Li    
Wen Zhong    
Weiwen Liao    
Yiqun Cai    
Jian Zhao and Guofeng Wang    

Resumen

Real-time tool condition monitoring (TCM) is becoming more and more important to meet the increased requirement of reducing downtime and ensuring the machining quality of manufacturing systems. However, it is difficult to satisfy both robustness and effectiveness of pattern recognition for a TCM system without using an unsupervised strategy. In this paper, a clustering-based TCM system is proposed that can be used for different machining conditions such as variable cutting parameters, variable cutters, and even variable cutting methods. The solution is based on a significant statistical correlation between tool wear and the distribution of cutting force features, which is revealed through the clustering results obtained from a novel clustering method based on adjacent grids searching (CAGS). This statistical correlation is converted into tool wear status by using an empirical factor that is robust for variable cutting processes. The proposed TCM system is completely unsupervised as a training-free procedure is used in the monitoring process. To verify the effectiveness of the system, a series of experiments are conducted, such as whole life-cycle wear experiment under same milling condition, tool wear experiment under variable milling conditions and tool wear experiment under same turning condition. The prediction accuracy of our system for tool wear experiment under variable milling conditions is 100%, 75% and 75%, respectively. In contrast, BP neural network, Bayesian network and SVM are used for tool wear prediction under the same conditions. Experimental results show the superiority and effectiveness of our TCM system based on cluster density of CAGS over several state-of-the-art supervised methods.

 Artículos similares

       
 
Kasun Moolikagedara, Minh Nguyen, Weiqi Yan and Xuejun Li    
In the digital age, where the Internet of Things (IoT) permeates every facet of our lives, the safeguarding of data privacy, especially video data, emerges as a paramount concern. The ubiquity of IoT devices, capable of capturing and disseminating vast q... ver más
Revista: Information

 
Ehab Alkhateeb, Ali Ghorbani and Arash Habibi Lashkari    
This research addresses a critical need in the ongoing battle against malware, particularly in the form of obfuscated malware, which presents a formidable challenge in the realm of cybersecurity. Developing effective antivirus (AV) solutions capable of c... ver más
Revista: Information

 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace

 
Sijie Liu, Nan Zhou, Chenchen Song, Geng Chen and Yafeng Wu    
This research introduces the Enhanced Scale-Aware efficient Transformer (ESAE-Transformer), a novel and advanced model dedicated to predicting Exhaust Gas Temperature (EGT). The ESAE-Transformer merges the Multi-Head ProbSparse Attention mechanism with t... ver más
Revista: Aerospace

 
Sara Zollini, Donatella Dominici, Maria Alicandro, María Cuevas-González, Eduard Angelats, Francesca Ribas and Gonzalo Simarro    
Coastal environments are dynamic ecosystems, constantly subject to erosion/accretion processes. Erosional trends have unfortunately been intensifying for decades due to anthropic factors and an accelerated sea level rise might exacerbate the problem. It ... ver más