Inicio  /  Applied Sciences  /  Vol: 9 Par: 14 (2019)  /  Artículo
ARTÍCULO
TITULO

Structural Reliability Estimation with Participatory Sensing and Mobile Cyber-Physical Structural Health Monitoring Systems

Ekin Ozer and Maria Q. Feng    

Resumen

With the help of community participants, smartphones can become useful wireless sensor network (WSN) components, form a self-governing structural health monitoring (SHM) system, and merge structural mechanics with participatory sensing and server computing. This paper presents a methodology and framework of such a cyber-physical system (CPS) that generates a bridge finite element model (FEM) integrated with vibration measurements from smartphone WSNs and centralized/distributed computational facilities, then assesses structural reliability based on updated FEMs. Structural vibration data obtained from smartphones are processed on a server to identify modal frequencies of an existing bridge. Without design drawings and supportive documentation but field measurements and observations, FEM of the bridge is drafted with uncertainties in the structural mass, stiffness, and boundary conditions (BCs). Then, 2700 FEMs are autonomously generated, and the baseline FEM is updated by minimizing the error between the crowdsourcing-based modal identification results and the FEM analysis. Furthermore, using 151 strong ground motion records from databases, the bridge response time history simulations are conducted to obtain displacement demand distribution. Finally, based on reference performance criteria, structural reliability of the bridge is estimated. Integrating the cyber (FEM analysis) and the physical (the bridge structure and measured vibration characteristics) worlds, this crowdsourcing-based CPS can provide a powerful tool for supporting rapid, remote, autonomous, and objective infrastructure-related decision-making. This study presents a new example of the emerging fourth industrial revolution from structural engineering and SHM perspective.

 Artículos similares

       
 
Dong Liu, Mengli Wu and Dimitri Donskoy    
This study investigates the application of Ultrasonic Pulse Velocity (UPV) for crack depth estimation in cylindrical structures, focusing on two approaches: reference measurement and dual measurement. It addresses the challenge of applying UPV to curved ... ver más
Revista: Acoustics

 
Massimiliano Pepe, Domenica Costantino and Vincenzo Saverio Alfio    
The aim of the paper is to identify a suitable method for assessing the deformation of structures (buildings, bridges, walls, etc.) by means of topographic measurements of significant targets positioned on the infrastructure under consideration. In parti... ver más
Revista: Infrastructures

 
Yahya Ali Fageehi and Abdulnaser M. Alshoaibi    
The primary focus of this paper is to investigate the application of ANSYS Workbench 19.2 software?s advanced feature, known as Separating Morphing and Adaptive Remeshing Technology (SMART), in simulating the growth of cracks within structures that incor... ver más
Revista: Applied Sciences

 
Alexander Lange, Ronghua Xu, Max Kaeding, Steffen Marx and Joern Ostermann    
Regular inspections of important civil infrastructures are mandatory to ensure structural safety and reliability. Until today, these inspections are primarily conducted manually, which has several deficiencies. In context of prestressed concrete structur... ver más
Revista: Acoustics

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más