Inicio  /  Infrastructures  /  Vol: 7 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Discrete Element Bonded-Block Models for Detailed Analysis of Masonry

José V. Lemos and Vasilis Sarhosis    

Resumen

A detailed modelling approach to represent masonry at the meso-scale is proposed, based on the discrete element method, considering the nonlinear behavior of the joints and the units. The fracture of units is represented by the bonded-block concept, in which a random network of potential cracks is created, allowing the progressive development of failure mechanisms. For simplicity, only the 2D case is presented, but the extension to 3D is straightforward. A key component of the proposed model is a framework for a joint or interface constitutive model, including the post-peak softening range, taking into account the experimental fracture energies. In this model, the softening curves in tension or shear are defined by piecewise linear segments, calibrated to reproduce the most common masonry constitutive models. The essential issues involved in the application of bonded-block models to masonry are examined, namely the block shape, either Voronoi polygons or triangles; size; deformability; and the influence of the main constitutive parameters. Uniaxial compression tests are analyzed in detail. The simulation of a well-known experiment of a brick panel under shear shows the good performance of the proposed approach. The investigation results demonstrate the model?s capabilities and provide guidelines for its application.

 Artículos similares

       
 
Heng Liu, Wenzhi Xu, Quanchun Yuan, Jin Zeng, Xiaohui Lei and Xiaolan Lyu    
In addressing the challenges of high energy consumption and low efficiency in fertilization borehole drilling for clayey soils in southern orchards, this study utilizes the Discrete Element Method to establish a simulation model for clayey soils. Through... ver más
Revista: Applied Sciences

 
Piotr Bortnowski, Robert Król, Natalia Suchorab-Matuszewska, Maksymilian Ozdoba and Mateusz Szczerbakowicz    
This study examines the optimization of ore receiving bins in underground copper mines, targeting the reduction of rapid wear and tear on bin components. The investigation identifies the primary wear contributors as the force exerted by the accumulated o... ver más
Revista: Applied Sciences

 
Peng Gao, Jinguang Li, Hongyan Qi, Xuanting Liu and Yunhai Ma    
This work proves the feasibility and effectiveness of upcutting belt motion to reduce the draught resistance of subsoilers, which is also a reference and experience for the optimization and modification of other soil-engaging components.
Revista: Applied Sciences

 
Marko Motaln and Tone Lerher    
Numerical simulations play a vital role in the modern engineering industry, especially when faced with interconnected challenges such as particle interactions and the structural integrity of conveyor systems. This article focuses on the handling of mater... ver más
Revista: Applied Sciences

 
Zehua Zhang, Wenle Gao and Yuming Kou    
Micro-parameter calibration is essential in constructing an accurate and reliable numerical model of particle discrete element PFC3D 6.0 software. Micro-parameter calibration is mainly accomplished according to the macro-parameters obtained from static o... ver más
Revista: Applied Sciences