Inicio  /  Applied Sciences  /  Vol: 12 Par: 17 (2022)  /  Artículo
ARTÍCULO
TITULO

Mathematical Modeling and Robust Control of a Restricted State Suspended Biped Robot Implementing Linear Actuators for Articulation Mobilization

Karla Rincon-Martinez    
Isaac Chairez and Wen-Yu Liu    

Resumen

The aim of this study is to develop an adaptive automatic control method for solving the trajectory tracking problem for a biped robotic device (BRD) and taking into account that each articulation is mobilized by a linear actuator. Each extremity of the BRD has three articulations with a linear actuator enforcing the controlled motion for each articulation. The control problem considers the task of tracking reference trajectories that define a regular gait cycle. The suggested adaptive control form has state-dependent gains that drive the tracking error into an invariant and attractive ellipsoidal with a center at the origin; meanwhile, the articulation restrictions are satisfied permanently. The stability analysis based on a controlled Lyapunov function depending on the tracking error leads to the explicit design of the state-dependent adaptive gains. Taking into account the forward complete setting of the proposed BRD, an output feedback formulation of the given adaptive controller is also developed using a finite-time and robust convergent differentiator based on the super-twisting algorithm. A virtual dynamic representation of the BRD is used to test the proposed controller using a distributed implementation of the adaptive controller. Numerical simulations corroborate the convergence of the tracking error, while all the articulation restrictions are satisfied using the adaptive gains. With the purpose of characterizing the proposed controller, a sub-optimal tuned regular state feedback controller is used as a comparative approach for validating the suggested design. Among the compared controllers, the analysis of the convergence of the mean square error of the tracking error motivates the application of the designed adaptive variant.

 Artículos similares

       
 
Mir-Amal M. Asadulagi, Ivan M. Pershin and Valentina V. Tsapleva    
The article considers a mathematical model of the hydrolithospheric process taking into account the skin effect. A methodology for using the results of groundwater inflow testing to determine the parameters of approximating models that take into account ... ver más
Revista: Water

 
Mihai Crengani?, Radu-Eugen Breaz, Sever-Gabriel Racz, Claudia-Emilia Gîrjob, Cristina-Maria Biri?, Adrian Maro?an and Alexandru Bârsan    
This scientific paper presents the development and validation process of a dynamic model in Simulink used for decision-making regarding the locomotion and driving type of autonomous omnidirectional mobile platforms. Unlike traditional approaches relying ... ver más
Revista: Applied Sciences

 
R. Gayathri, Jen-Yi Chang, Chia-Cheng Tsai and Tai-Wen Hsu    
An oscillating water column (OWC) is designed for the extraction and conversion of wave energy into usable electrical power, rather than being a standalone renewable energy source. This review paper presents a comprehensive analysis of the mathematical m... ver más

 
Sergejus Lebedevas and Edmonas Mila?ius    
The decarbonization of maritime transport has become a crucial strategy for the adoption of renewable low-carbon fuels (LCFs) (MARPOL 73/78 (Annex VI) and COM (2021) 562-final 2021/0210 (COD)). In 2018, 98% of operated marine diesel engines ran on fossil... ver más

 
Jean-Marc Guarini and Jennifer Coston-Guarini    
In their 2023 book, ?The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy?, Lubchenko and Haugan invoked alternate stable (AS) states marginally as an undesired consequence of sources of disturbance on populations, communities an... ver más