ARTÍCULO
TITULO

The Effect of Mass Ratio and Damping Coefficient on the Propulsion Performance of the Semi-Active Flapping Foil of the Wave Glider

Zhanfeng Qi    
Min Jiang    
Lishuang Jia    
Bo Zou and Jingsheng Zhai    

Resumen

A numerical investigation on the propulsion performance of the semi-active flapping foil of the wave glider with different mass ratio and damping coefficient is investigated. The commercial CFD software Fluent is used to solve the URANS equations around the flapping foil by the Finite Volume Method. A mesh of 2D NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first analyze the effect of the mass ratio on the mean output power coefficient and propulsion efficiency and note that with the variation of the mass ratio, the propulsion efficiency decreases slightly. Besides, we find that the mass ratio has a noticeable influence on the mean output power coefficient, and the influence is determined by the reduced frequency. For high reduced frequency, with the increase of the mass ratio, the propulsion performance of the flapping foil decreases monotonously. For low reduced frequency, the mean output power increases slightly. For critically reduced frequency, the mean output power coefficient of the foil firstly increases and then decreases via the mass ratio increase. Then, we examine the influence of the damping coefficient on the propulsion performance of the flapping foil and find that the damping coefficient has a severe adverse effect on the output power and propulsion efficiency. We conclude that the influence of the damping coefficient should be considered first when we design the propulsion device of the semi-active flapping foil. Meanwhile, we should also consider the sea conditions to choose the mass ratio to optimize the flapping foil.

 Artículos similares

       
 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Qihang Li, Yunmin Wang, Xiaoshuang Li and Bin Gong    
This research examines how rainfall and mining affect the slope damage resulting from the transition from open-pit mining to underground mining. Using an unmanned aerial vehicle (UAV), the Huangniu slope of the Dexing Copper Mine was fully characterized,... ver más
Revista: Water

 
Piyabalo Kodom, Antonio J. Aragón-Barroso, Edem K. Koledzi, Kwamivi Segbeaya, Jesús González-López and Francisco Osorio    
This study aimed to treat sewage sludge through microwave irradiation at a laboratory scale. The objective was to investigate the effect of microwave irradiation on microorganisms, water content, organic matter, and agronomic nutrients present in sewage ... ver más
Revista: Water

 
Limei Ma, Yongheng Zhang, Yuli Niu, Yong Zhao, Shaoya Guan, Zijing Wang and Tuoda Wu    
Ball-shell rotors with non-standard shapes, non-uniform conductive coatings, and eccentric masses machined by conventional processes constrain the improvement of levitation and torque accuracy of magnetically levitated momentum balls. This paper focuses ... ver más
Revista: Aerospace

 
Guohong Chen, Peng Cai, Jiewei Zhan, Yueqiao Yang, Zhaowei Yao and Zhaoyue Yu    
Since the beginning of spring 2022, successive landslides have occurred in the eastern pit slope of the Wolong Coal Mine in Qipanjing Town, Otog Banner, Inner Mongolia, which has adversely affected the mine?s production safety. This study aims to reveal ... ver más
Revista: Applied Sciences