Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

The Impacts of Soil Moisture Initialization on the Forecasts of Weather Research and Forecasting Model: A Case Study in Xinjiang, China

Hailiang Zhang    
Junjian Liu    
Huoqing Li    
Xianyong Meng and Ablimitijan Ablikim    

Resumen

Soil moisture is a critical parameter in numerical weather prediction (NWP) models because it plays a fundamental role in the exchange of water and energy cycles between the atmosphere and the land surface through evaporation. To improve the forecast skills of the Weather Research and Forecasting (WRF) model in Xinjiang, China, this study investigated the impacts of soil moisture initialization on the WRF forecasts by performing a series of simulations. A group of simulations was conducted using the single-column model (SCM) from 1200 UTC on 15 to 18 August 2019, at Urumchi, Xinjiang (43.78° N, 87.6° E); another was performed using the WRF model for a real weather case in Xinjiang from 0000 UTC 15 August to 1200 UTC 18 August 2019, which included an episode of heavy precipitation and gales. Our most notable findings are as follows. Specific humidity increases and potential temperature decreases persistently when soil moisture increases because of soil water evaporation. Soil moisture initialization could impact the energy budget and modulate the partition of the total available energy at the land surface significantly through evaporation and the greenhouse effect. Replacing the soil moisture with a proper multiple of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) soil moisture data could significantly improve the critical success index (CSI) and frequency bias (FBIAS) of precipitation and the root-mean-squared errors (RMSEs) of 2-m specific humidity and 2-m temperature. These findings indicate the prospect of a new way to improve the forecast skills of WRF in Xinjiang or other similar regions.

 Artículos similares

       
 
Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Pabrício Marcos Oliveira Lopes, Henrique Fonseca Elias de Oliveira, Josef Augusto Oberdan Souza Silva, Márcio Mesquita, Ailton Alves de Carvalho, Alan Cézar Bezerra, José Francisco de Oliveira-Júnior, Maria Beatriz Ferreira, Iara Tamires Rodrigues Cavalcante, Elania Freire da Silva and Geber Barbosa de Albuquerque Moura    
Northeast Brazil (NEB), particularly its semiarid region, represents an area highly susceptible to the impacts of climate change, including severe droughts, and intense anthropogenic activities. These stresses may be accelerating environmental degradatio... ver más
Revista: Hydrology

 
Qingyan Wang, Longzhi Sun and Xuan Yang    
Rice yield is essential to global food security under increasingly frequent and severe climate change events. Spatial analysis of rice yields becomes more critical for regional action to ensure yields and reduce climate impacts. However, the understandin... ver más

 
Hao Wu, Xuewen Lei, Xiang Chen, Jianhua Shen, Xinzhi Wang and Tiantian Ma    
The reclamation coral sand (CS) layer is the survival environment for island reef vegetation in the South China Sea. The root system within the CS bed draws water necessary for vegetation growth, implying that the water-retention capacity of CS plays a p... ver más

 
Vaibhav Kumar, Hone-Jay Chu and Abhishek Anand    
The characteristics of terrestrial droughts are closely linked to simultaneous fluctuations in climatic factors, notably influenced by sea surface temperature (SST). This study explores the response of vegetation photosynthesis, indicated by solar-induce... ver más

 
Mei-Yung Leung, Khursheed Ahmed and Isabella Y. S. Chan    
Engineers often play vital roles in technical planning, designing, and operating projects, as well as implementing standard requirements in the physical sites. Although architectural designs may be similar in a construction project, the technical problem... ver más
Revista: Buildings