ARTÍCULO
TITULO

Mechanical Behavior of the Rock-Concrete Interface for a Bridge Anchorage Structure Using Discrete Element Method

Zhen Cui    
Maochu Zhang and Qian Sheng    

Resumen

Traditionally, the numerical simulation work of a bridge gravity anchorage structure is performed with a continuous method, such as the finite element method (FEM). However, since the rock mass and gravity anchorage structure are assumed to be continuous in the FEM, the interaction between the rock mass foundation and the concrete of the anchorage is not frequently considered. This paper aims to investigate the problem of the interaction between the rock mass foundation and the concrete of the anchorage. The discrete element method (DEM), which has been verified to be suitable for the modelling of contact problems of discrete blocks, is introduced in this paper to simulate the mechanical behavior of the rock-concrete system of the gravity anchorage structure and its rock mass foundation. Based on the in-situ scale model test for a bridge, the mechanical behavior of the rock-concrete interface was discussed with the DEM method. With the calibrated DEM model, the displacement of the foundation rock mass, contact stresses, and yield state on the rock-concrete interface were numerically investigated. The anti-sliding effect of the keyway and the step at the bottom of the gravity anchorage structure was analyzed. The results show that the anchorage deformation under the design conditions is basically characterized by the rigid rotation around the keyway of platform #2, and that such rotation subsequently affects the anti-shear capacity of the entire gravity anchorage to a large extent. The anchorage scale model could remain stable under the design lateral load such that the rock-concrete interface would remain intact and sufficient shear resistance could be provided by the keyway and steps.

 Artículos similares

       
 
Chang Li, Shuren Hao, Shengjie Zhang, Yongqing Jiang and Zhidong Yi    
In order to understand the long-term process of CO2 storage and demonstrate its safety, multi-field coupled numerical simulation is considered a crucial technology in the field of geological CO2 storage. This study establishes a site-specific homogeneous... ver más
Revista: Water

 
Hao Su, Monssef Drissi-Habti and Valter Carvelli    
This work is a follow-up to previous research by our team and is devoted to studying a dual-sinusoidal placement of distributed fiber-optic sensors (FOSs) that are embedded inside an adhesive joint between two composite laminates. The constructed smart c... ver más
Revista: Applied Sciences

 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Yangbing Cao, Qiang Yan, Sui Zhang and Fuming Cai    
Shale is a common rock type that is associated with underground engineering projects, and several important factors, such as bedding structure, confining pressure, and the loading and unloading path, significantly influence the anisotropy of shale. Triax... ver más
Revista: Applied Sciences