Inicio  /  Clean Technologies  /  Vol: 2 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Electroreforming of Glucose and Xylose in Alkaline Medium at Carbon Supported Alloyed Pd3Au7 Nanocatalysts: Effect of Aldose Concentration and Electrolysis Cell Voltage

Thibault Rafaïdeen    
Neha Neha    
Bitty Roméo Serge Kouamé    
Stève Baranton and Christophe Coutanceau    

Resumen

The effects of cell voltage and of concentration of sugars (glucose and xylose) on the performances of their electro-reforming have been evaluated at a Pd3Au7/C anode in 0.10 mol L-1 NaOH solution. The catalyst synthesized by a wet chemistry route is first comprehensively characterized by physicochemical and electrochemical techniques. The supported catalyst consists in alloyed Pd3Au7 nanoparticles of circa 6 nm mean diameter deposited on a Vulcan XC72 carbon support, with a metal loading close to 40 wt%. Six-hour chronoamperometry measurements are performed at 293 K in a 25 cm2 electrolysis cell for the electro-conversion of 0.10 mol L-1 and 0.50 mol L-1 glucose and xylose at cell voltages of +0.4 V, +0.6 V and +0.8 V. Reaction products are analyzed every hour by high performance liquid chromatography. The main products are gluconate and xylonate for glucose and xylose electro-reforming, respectively, but the faradaic yield, the selectivity and the formation rate of gluconate/xylonate decrease with the increase of aldose concentration, whereas lower faradaic yields and higher formation rates of gluconate/xylonate are observed at +0.8 V than at +0.4 V (higher chemical yields).

Palabras claves