ARTÍCULO
TITULO

A Robust and Efficient Computational Fluid Dynamics Approach for the Prediction of Horizontal-Axis Wind Turbine Performance

Florin Popescu    
Razvan Mahu    
Eugen Rusu and Ion V. Ion    

Resumen

In spite of the tremendous advances in computing power and continuous improvements in simulation software made in recent decades, the accurate estimation of wind turbine performance using numerical methods remains challenging. Wind turbine aerodynamics, especially when operating outside of the design envelope, is highly complex: blade stall, laminar-to-turbulent boundary layer transition, rotational effects (lift augmentation near blade root), and tip losses are present. The scope of this research is to show that the classic Reynolds-Averaged Navier?Stokes (RANS) modeling approach, although extensively tried and tested, is not yet exhausted. The NREL Phase VI rotor was used as a basis for numerical methodology development, verification and validation. The numerical model results are compared in detail with the available measured data, both globally (turbine torque and thrust, and blade bending moment) and locally (pressure coefficient distributions and aerodynamic force coefficients at several locations on the blade) over the entire experimental wind speed range. Stall initiation and spread over the blade span are well captured by the model, and rotor performance is predicted with good accuracy. RANS still presents significant value for wind turbine engineering, with a great balance between accuracy and computational cost. The present work brings potential impact on all applications of wind turbines, especially targeting offshore wind energy extraction for which great development is expected in the near future.

 Artículos similares

       
 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms

 
Santiago Moreno-Carbonell and Eugenio F. Sánchez-Úbeda    
The Linear Hinges Model (LHM) is an efficient approach to flexible and robust one-dimensional curve fitting under stringent high-noise conditions. However, it was initially designed to run in a single-core processor, accessing the whole input dataset. Th... ver más
Revista: Algorithms

 
Xinyi Meng and Daofeng Li    
The explosive growth of malware targeting Android devices has resulted in the demand for the acquisition and integration of comprehensive information to enable effective, robust, and user-friendly malware detection. In response to this challenge, this pa... ver más
Revista: Applied Sciences

 
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang    
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ... ver más
Revista: Applied Sciences

 
Lei Li, Xiaobao Zeng, Xinpeng Pan, Ling Peng, Yuyang Tan and Jianxin Liu    
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent process... ver más
Revista: Applied Sciences