Inicio  /  Applied Sciences  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Effective Conversion of a Convolutional Neural Network into a Spiking Neural Network for Image Recognition Tasks

Huynh Cong Viet Ngu and Keon Myung Lee    

Resumen

Due to energy efficiency, spiking neural networks (SNNs) have gradually been considered as an alternative to convolutional neural networks (CNNs) in various machine learning tasks. In image recognition tasks, leveraging the superior capability of CNNs, the CNN?SNN conversion is considered one of the most successful approaches to training SNNs. However, previous works assume a rather long inference time period called inference latency to be allowed, while having a trade-off between inference latency and accuracy. One of the main reasons for this phenomenon stems from the difficulty in determining proper a firing threshold for spiking neurons. The threshold determination procedure is called a threshold balancing technique in the CNN?SNN conversion approach. This paper proposes a CNN?SNN conversion method with a new threshold balancing technique that obtains converted SNN models with good accuracy even with low latency. The proposed method organizes the SNN models with soft-reset IF spiking neurons. The threshold balancing technique estimates the thresholds for spiking neurons based on the maximum input current in a layerwise and channelwise manner. The experiment results have shown that our converted SNN models attain even higher accuracy than the corresponding trained CNN model for the MNIST dataset with low latency. In addition, for the Fashion-MNIST and CIFAR-10 datasets, our converted SNNs have shown less conversion loss than other methods in low latencies. The proposed method can be beneficial in deploying efficient SNN models for recognition tasks on resource-limited systems because the inference latency is strongly associated with energy consumption.

 Artículos similares

       
 
Pengyun Chen, Zhiru Li, Guangqing Liu, Ziyi Wang, Jiayu Chen, Shangyao Shi, Jian Shen and Lizhou Li    
The positioning results of terrain matching in flat terrain areas will significantly deteriorate due to the influence of terrain nonlinearity and multibeam measurement noise. To tackle this problem, this study presents the Pulse-Coupled Neural Network (P... ver más

 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más

 
Min Xu, Wenjie Tian and Xiangpeng Zhang    
The three-degrees-of-freedom (3-DOF) parallel robot is commonly employed as a shipborne stabilized platform for real-time compensation of ship disturbances. Pose accuracy is one of its most critical performance indicators. Currently, neural networks have... ver más

 
Shun Wang, Jiayan Wang, Zhikang Xu, Ji Wang, Rui Li and Jinliang Dai    
The application of titanium alloy in shipbuilding can reduce ship weight and carbon emissions. To solve the problem of titanium alloy forming, the deformation prediction of titanium alloy line heating based on a backpropagation (BP) neural network and sp... ver más

 
Yifan Shang, Wanneng Yu, Guangmiao Zeng, Huihui Li and Yuegao Wu    
Image recognition is vital for intelligent ships? autonomous navigation. However, traditional methods often fail to accurately identify maritime objects? spatial positions, especially under electromagnetic silence. We introduce the StereoYOLO method, an ... ver más