ARTÍCULO
TITULO

Variance of the Equatorial Atmospheric Circulations in the Reanalysis

Emmanuel OlaOluwa Eresanya and Yuping Guan    

Resumen

The structure of the equatorial atmospheric circulation, as defined by the zonal mass streamfunction (ZMS), computed using the new fifth-generation ECMWF reanalysis for the global climate and weather (ERA-5) and the National Centers for Environmental Prediction NCEP?US Department of Energy reanalysis (NCEP-2) reanalysis products, is investigated and compared with Coupled Model Intercomparison Project Phase 6 (CMIP 6) ensemble mean. The equatorial atmospheric circulations majorly involve three components: the Indian Ocean cell (IOC), the Pacific Walker cell (POC) and the Atlantic Ocean cell (AOC). The IOC, POC and AOC average monthly or seasonal cycle peaks around March, June and February, respectively. ERA-5 has a higher IOC intensity from February to August, whereas NCEP-2 has a greater IOC intensity from September to December; NCEP-2 indicates greater POC intensity from January to May, whereas ERA-5 shows higher POC intensity from June to October. For the AOC, ERA-5 specifies greater intensity from March to August and NCEP-2 has a higher intensity from September to December. The equatorial atmospheric circulations cells vary in the reanalysis products, the IOC is weak and wider (weaker and smaller) in the ERA-5 (NCEP-2), the POC is more robust and wider (feebler and teensier) in NCEP-2 (ERA-5) and the AOC is weaker and wider (stronger and smaller) in ERA-5 (NCEP-2). ERA-5 revealed a farther westward POC and AOC compared to NCEP-2. In the CMIP 6 model ensemble mean (MME), the equatorial atmospheric circulations mean state indicated generally weaker cells, with the IOC smaller and the POC greater swinging eastward and westward, respectively, while the AOC is more westward. These changes in equatorial circulation correspond to changes in dynamically related heating in the tropics.

 Artículos similares