Inicio  /  Applied Sciences  /  Vol: 12 Par: 24 (2022)  /  Artículo
ARTÍCULO
TITULO

Attenuation and Frequency Characteristics of Acoustic Waves in Steel and Synthetic Fiber-Reinforced Concrete: 3D-PCT and Unsupervised Pattern Recognition

Sena Tayfur and Ninel Alver    

Resumen

In heterogeneous materials such as concrete, deterioration of the elastic wave?which acoustic emission technique (AET) is based on?is one of the research objects in the field. While many studies reveal that the wave is deteriorated due to the concrete content and deterioration of AE signals causes erroneous data interpretation, a limited number of them have suggested eliminating the effects of this problem. For this reason, contributing to the existing literature, this paper proposes to correct AE signals for fiber-reinforced concrete, which is a highly heterogeneous material, by 3D-PCT (Parameter Correction Technique) developed with new approaches in the authors? previous study for concrete. First, the attenuation properties of concrete samples, including different types and amounts of fibers, were revealed within this scope. Contour maps showed that the type and amount of fiber are effective on elastic wave attenuation. Then, the samples were tested under flexure, and AE results were compared with mechanical findings after parameter correction. The effectiveness of the proposed correction method was verified by separating fiber activities from concrete cracking activities for the first time in the literature with weighted peak frequency and partial power. In this way, by successfully matching the fiber activities, which were revealed after the correction, with the crack development times obtained from frequency-based unsupervised pattern recognition, it was seen that a more accurate AE interpretation could be made with parameter correction. Moreover, corrected AE parameters also provided to propose a new inference for identifying a relationship between the amplitude and energy loss of the AE signals and the type of damage.

 Artículos similares

       
 
Qingchao Yang, Zhaozhao Ma, Ruiping Zhou, Heow Pueh Lee and Kai Chai    
In recent times, there has been a significant focus on electromagnetic resonant shunt damping (ERSD) and quasi-zero-stiffness vibration isolators (QZS VI) as prominent solutions for vibration mitigation or energy harvesting. In this paper, an innovative ... ver más
Revista: Applied Sciences

 
Lixia Li, Haiteng Hu and Xiaolan Wu    
In this paper, we propose an acoustic black hole radial elastic metamaterial (AREM). Through the study of its dispersion relations, it is found that, compared with the conventional elastic metamaterial, the AREM gathers energy at the tip of the black hol... ver más
Revista: Applied Sciences

 
Xiaoxing Su, Jixing Qin and Xiangshuai Yu    
This paper reports the interference pattern of an acoustic field in the 100?300 Hz frequency band observed in a shallow water experiment. Assuming there is a conventional fluid sea bottom, the observed interference pattern is first demonstrated to potent... ver más

 
Oscar Scussel, Michael J. Brennan, Fabrício Cézar L. de Almeida, Mauricio K. Iwanaga, Jennifer M. Muggleton, Phillip F. Joseph and Yan Gao    
The frequency range of the leak noise in buried water pipes, measured using acoustic correlators, depends significantly on the type of pipe and its location as well as the type of sensors used. Having a rough idea of this frequency range can be beneficia... ver más
Revista: Acoustics

 
Mohammad (Behdad) Jamshidi, Salah I. Yahya, Saeed Roshani, Muhammad Akmal Chaudhary, Yazeed Yasin Ghadi and Sobhan Roshani    
This paper introduces a novel algorithm for designing a low-pass filter (LPF) and a microstrip Wilkinson power divider (WPD) using a neural network surrogate model. The proposed algorithm is applicable to various microwave devices, enhancing their perfor... ver más
Revista: Algorithms