Inicio  /  Infrastructures  /  Vol: 9 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Steel Bridge Corrosion Segmentation and Condition Rating Using Mask RCNN and YOLOv8

Zahra Ameli    
Shabnam Jafarpoor Nesheli and Eric N. Landis    

Resumen

The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application of convolutional neural networks (CNNs) for corrosion detection and classification. However, current approaches primarily involve detecting corrosion within bounding boxes, lacking the segmentation of corrosion with irregular boundary shapes. As a result, it becomes challenging to quantify corrosion areas and severity, which is crucial for engineers to rate the condition of structural elements and assess the performance of infrastructures. Furthermore, training an efficient deep learning model requires a large number of corrosion images and the manual labeling of every single image. This process can be tedious and labor-intensive. In this project, an open-source steel bridge corrosion dataset along with corresponding annotations was generated. This database contains 514 images with various corrosion severity levels, gathered from a variety of steel bridges. A pixel-level annotation was performed according to the Bridge Inspectors Reference Manual (BIRM) and the American Association of State Highway and Transportation Officials (AASHTO) regulations for corrosion condition rating (defect #1000). Two state-of-the-art semantic segmentation algorithms, Mask RCNN and YOLOv8, were trained and validated on the dataset. These trained models were then tested on a set of test images and the results were compared. The trained Mask RCNN and YOLOv8 models demonstrated satisfactory performance in segmenting and rating corrosion, making them suitable for practical applications.

 Artículos similares

       
 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Yuhan Li, Shuguang Zhang, Ruichen He and Florian Holzapfel    
Urban Air Mobility (UAM) has emerged in response to increasing traffic demands. As UAM involves commercial flights in complex urban areas, well-established automation technologies are critical to ensure a safe, accessible, and reliable flight. However, t... ver más
Revista: Aerospace

 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences