Inicio  /  Coatings  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy

Dongdong Ye    
Rui Li    
Jianfei Xu and Jiabao Pan    

Resumen

Accurate measurement of porosity is crucial for comprehensive performance evaluation of thermal barrier coatings (TBCs) on aero-engine blades. In this study, a novel data-driven predictive method based on terahertz time-domain spectroscopy (THz-TDS) was proposed. By processing and extracting features from terahertz signals, multivariate parameters were composed to characterize the porosity. Principal component analysis, which enabled effective representation of the complex signal information, was introduced to downscale the dimensionality of the time-domain data. Additionally, the average power spectral density of the frequency spectrum and the extreme points of the first-order derivative of the phase spectrum were extracted. These extracted parameters collectively form a comprehensive set of multivariate parameters that accurately characterize porosity. Subsequently, the multivariate parameters were used as inputs to construct an extreme learning machine (ELM) model optimized by the sparrow search algorithm (SSA) for predicting porosity. Based on the experimental results, it was evident that the predictive accuracy of SSA-ELM was significantly higher than the basic ELM. Furthermore, the robustness of the model was evaluated through K-fold cross-validation and the final model regression coefficient was 0.92, which indicates excellent predictive performance of the data-driven model. By introducing the use of THz-TDS and employing advanced signal processing techniques, the data-driven model provided a novel and effective solution for the rapid and accurate detection of porosity in TBCs. The findings of this study offer valuable references for researchers and practitioners in the field of TBCs inspection, opening up new avenues for improving the overall assessment and performance evaluation of these coatings.

 Artículos similares

       
 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences

 
Jia-Ling Xie, Wei-Feng Shi, Ting Xue and Yu-Hang Liu    
The fault detection and diagnosis of a ship?s electric propulsion system is of great significance to the reliability and safety of large modern ships. The traditional fault diagnosis method based on mathematical models and expert knowledge is limited by ... ver más

 
Dingnan Song, Ran Liu, Zhiwei Zhang, Dingding Yang and Tianzhen Wang    
Tidal stream turbines (TSTs) harness the kinetic energy of tides to generate electricity by rotating the rotor. Biofouling will lead to an imbalance between the blades, resulting in imbalanced torque and voltage across the windings, ultimately polluting ... ver más

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water