Inicio  /  Water  /  Vol: 15 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

Modeling Method for Aerobic Zone of A2O Based on KPCA-PSO-SCN

Wenxia Lu    
Xueyong Tian    
Yongguang Ma    
Yinyan Guan    
Libo Liu and Liwei Shi    

Resumen

Sewage treatment plants face significant problems as a result of the annual growth in urban sewage discharge. Substandard sewage discharge can also be caused by rising sewage treatment expenses and unpredictable procedures. The most widely used sewage treatment process in urban areas is the Anaerobic?Anoxic?Oxic (A2O) sewage treatment process. Therefore, modeling the sewage treatment process and predicting the effluent quality are of great significance. A process modeling method based on Kernel Principal Component Analysis?Particle Swarm Optimization?Stochastic Configuration Network (KPCA-PSO-SCN) is proposed for the A2O aerobic wastewater treatment process. Firstly, eight auxiliary variables were determined through mechanism analysis, including Chemical Oxygen Demand (COD) and ammonia nitrogen (NH4+) and nitrate nitrogen (NO3-) of influent water, pH, temperature (T), Mixed Liquor Suspended Solid (MLSS), Dissolved Oxygen (DO) and hydraulic residence time (HRT) in the aerobic zone. Dimensionality reduction was carried out using the kernel principal component analysis method based on the Gaussian function, and the eight-dimensional data were changed to five-dimensional data, which improved the running speed and efficiency of subsequent models. Then, according to the advantages of the particle swarm optimization algorithm, such as low calculation cost and fast convergence, combined with the advantages of stochastic configuration network general approximation performance, the PSO-SCN model was established to predict the three water quality indexes of effluent COD, NH4+, and NO3- for the aerobic zone. The experimental results proved the effectiveness of the model. Compared with classic water quality prediction algorithm models such as SCN, PSO-BP, RBF, PSO-RBF, etc., the superiority of the PSO-SCN algorithm model was demonstrated.

 Artículos similares

       
 
Huaxiang He, Aiqi Chen, Mingwan Yin, Zhenzhen Ma, Jinjun You, Xinmin Xie, Zhizhang Wang and Qiang An    
The rational allocation of water resources in the basin/region can be better assisted and performed using a suitable water resources allocation model. Rule-based and optimization-based simulation methods are utilized to solve medium- and long-term water ... ver más
Revista: Water

 
M.H.J.P. Gunarathna, Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii and M.K.N. Kumari    
Poor data availability on soil hydraulic properties in tropical regions hampers many studies, including crop and environmental modeling. The high cost and effort of measurement and the increasing demand for such data have driven researchers to search for... ver más
Revista: Water

 
Ai-Sheng Wang, Zhang-Cai Yin and Shen Ying    
The possibility of moving objects accessing different types of points of interest (POIs) at specific times is not always the same, so quantitative time geography research needs to consider the actual POI semantic information, including POI attributes and... ver más

 
Liang Liu, Tianbin Li and Chunchi Ma    
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo... ver más
Revista: Applied Sciences

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace