ARTÍCULO
TITULO

Power Prediction of Wind Farms via a Simplified Actuator Disk Model

Yen-Cheng Chiang    
Yu-Cheng Hsu and Shiu-Wu Chau    

Resumen

This paper aims to demonstrate a simplified nonlinear wake model that fills the technical gap between the low-cost and less-accurate linear formulation and the high-cost and high-accuracy large eddy simulation, to offer a suitable balance between the prediction accuracy and the computational cost, and also to establish a robust approach for long-term wind farm power prediction. A simplified actuator disk model based on the momentum theory is proposed to predict the wake interaction among wind turbines along with their power output. The three-dimensional flow field of a wind farm is described by the steady continuity and momentum equation coupled with a k-ε" role="presentation">??e e turbulence model, where the body force representing the aerodynamic impact of the rotor blade on the airflow is uniformly distributed in the Cartesian cells within the actuator disk. The characteristic wind conditions identified from the data of the supervisory control and data acquisition (SCADA) system were employed to build the power matrix of these typical wind conditions for reducing the computation demands to estimate the yearly power production. The proposed model was favorably validated with the offshore measurement of Horns Rev wind farm, and three Taiwanese onshore wind farms were forecasted for their yearly capacity factors with an average error less than 5%, where the required computational cost is estimated about two orders of magnitude smaller than that of the large eddy simulation. However, the proposed model fails to pronouncedly reproduce the individual power difference among wind turbines in the investigated wind farm due to its time-averaging nature.

 Artículos similares

       
 
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más

 
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng    
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ... ver más
Revista: Applied Sciences

 
Kangwen Sun, Siyu Liu, Huafei Du, Haoquan Liang and Xiao Guo    
The stratospheric airship is a type of aerostat that uses solar energy as its power source and can fly continuously for months or even years in near space. The rapid and accurate prediction of the output power of its solar array is the key to maintaining... ver más
Revista: Aerospace

 
Ling Zhou, Peng Yan, Yanjun Zhang, Honglei Lei, Shuren Hao, Yueqiang Ma and Shaoyou Sun    
The optimization of the production scheme for enhanced geothermal systems (EGS) in geothermal fields is crucial for enhancing heat production efficiency and prolonging the lifespan of thermal reservoirs. In this study, the 4100?4300 m granite diorite str... ver más
Revista: Water

 
Xin Wang, Deyou Liu, Ling Zhou and Chao Li    
The performance of wind turbines directly determines the profitability of wind farms. However, the complex environmental conditions and influences of various uncertain factors make it difficult to accurately assess and monitor the actual power generation... ver más
Revista: Applied Sciences