Inicio  /  Applied Sciences  /  Vol: 11 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

Evaluation and Validation of Viscous Oil Cavitation Model Used in Torque Converter

Meng Guo    
Cheng Liu    
Qingdong Yan    
Zhifang Ke    
Wei Wei and Juan Li    

Resumen

Hydraulic torque converter is widely used in transmission units as it is able to provide variable speed and torque ratio, isolate vibration, and absorb shock. The pursuit of a highly packed power unit requires a high capacity/speed torque converter, consequently resulting in a higher risk for cavitation and severe performance degradation, noise, vibration, and even failure. Existing cavitation models generally focus on water, and the empirical parameters are not suitable for the cavitation prediction of torque converter which utilizes high viscosity oil as its working medium. This paper focused on the influence of parameters on the performance and cavitation characteristics of torque converter. A full flow passage geometry and different computational fluid dynamics (CFD) models with cavitation were developed to predict torque converter fluid behavior by resolving Reynolds-averaged Navier?Stokes equations using finite volume method (FVM). The numerical results indicated that nuclei volume fraction, vaporization coefficient, mean nucleation site radius, and maximum density ratio have great influences on the cavitation behavior. These parameters altered the degree of cavitation and the pressure distribution on the surface of stator blades, and affected the stall performance such as stall capacity factor and torque ratio. The cavitation model was then modified to improve calculation accuracy. The test results showed that the prediction error under stall operating condition was decreased from 6.7% to 2%. This study provides insight on the influences of the empirical parameters on both internal cavitation behavior as well as overall hydrodynamic performance.

 Artículos similares

       
 
Dong Min Kim, Soon Ho Hong, Se Hyeon Jeong and Sun Je Kim    
The interest in wind-assisted ship propulsions (WASPs) is increasing to improve fuel efficiency and to reduce greenhouse gas emissions in ships. A rotor sail, one of the typical WASPs, can provide auxiliary propulsive force by rotating a cylinder-shaped ... ver más

 
Pengyu Wei, Chuntong Li, Ze Jiang and Deyu Wang    
Digital twins, an innovative technology propelled by data and models, play a seminal role in the digital transformation and intelligent upgrade of ships. This study introduces a digital twin methodology for the real-time monitoring of ship structure defo... ver más

 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water