Inicio  /  Water  /  Vol: 15 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Water Distribution Network Partitioning Based on Complex Network Theory: The Udine Case Study

Federico Spizzo    
Giovanni Venaruzzo    
Matteo Nicolini and Daniele Goi    

Resumen

Water Distribution Network Partitioning (WDNP), which is the partitioning of the existing Water distribution Network (WDN) into smaller and more homogeneous portions called District Metered Areas (DMAs), is an effective strategy that allows water utilities to improve network management through water balance, pressure control, water loss detection, and protection from contamination. The partitioning is realized physically, closing the pipes between two different districts, or virtually, installing flow meters which measure the districts inflow and outflow. Pipe closures lead to a considerable network performance worsening, reducing minimum pressure, resilience, and redundancy; on the other hand, flow meters allow us to avoid these issues but involve a higher investing cost. Hence, the DMAs? definition could become a hard task because both network performance and maximum investing cost must be respected. This paper presents the application of an optimization approach, based on complex network theory, coupled with an optimization technique based on genetic algorithms (GA). The methodology, implemented in Python environment, consists of a clustering phase carried out with two different algorithms (Girvan?Newman and spectral clustering) and a dividing phase which defines whether a gate valve or a flow meter should be installed in a pipe. The last phase is fulfilled with the GA which allows us to optimize one or more objectives in order to minimize the cost and maximize the network performance. The methodology has been applied on the Udine water distribution system, whose hydraulic model has been calibrated with a recent measure campaign. The results produced with the different clustering algorithms and objective functions have been compared to show their pros and cons.

 Artículos similares

       
 
Jae Young Seo and Sang-Il Lee    
Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we p... ver más
Revista: Water

 
Tao Tang, Shuhan Guo, Lu Tan, Tao Li, Ryan M. Burrows and Qinghua Cai    
Although most lotic ecosystems are groundwater dependent, our knowledge on the relatively long-term ecological effects of groundwater discharge on downstream reaches remains limited. We surveyed four connected reaches of a Chinese karst stream network fo... ver más
Revista: Water

 
Kaiwen Song, Xiujuan Jiang, Tianye Wang, Dengming Yan, Hongshi Xu and Zening Wu    
The uneven spatial and temporal distribution of water resources has consistently been one of the most significant limiting factors for social development in many regions. Furthermore, with the intensification of climate change, this inequality is progres... ver más
Revista: Water

 
Flavia D. Frederick, Malvin S. Marlim and Doosun Kang    
Chlorine decay over time and distance travelled poses challenges in maintaining consistent chlorine levels from treatment plants to demand nodes in water distribution networks (WDNs). Many studies have focused on optimizing chlorine booster systems and a... ver más
Revista: Water

 
Christogonus U. Onukwube, Daniel O. Aikhuele and Shahryar Sorooshian    
Water distribution networks are complex systems that aid in the delivery of water to residential and non-residential areas. However, the networks can be affected by different types of faults, which could lead to the wastage of treated water. As such, the... ver más
Revista: Applied Sciences