Inicio  /  Antioxidants  /  Vol: 13 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Pharmacologic Ascorbate Radiosensitizes Pancreatic Cancer but Radioprotects Normal Tissue: The Role of Oxidative Stress-Induced Lipid Peroxidation

Gloria Y. Chen    
Brianne R. O?Leary    
Juan Du    
Rory S. Carroll    
Garett J. Steers    
Garry R. Buettner and Joseph J. Cullen    

Resumen

The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.

PÁGINAS
pp. 0 - 0
REVISTAS SIMILARES

 Artículos similares