Inicio  /  Applied Sciences  /  Vol: 13 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles

Richard Bustos    
S. Andrew Gadsden    
Mohammad Al-Shabi and Shohel Mahmud    

Resumen

To ensure reliable operation of electrical systems, batteries require robust battery monitoring systems (BMSs). A BMS?s main task is to accurately estimate a battery?s available power, referred to as the state of charge (SOC). Unfortunately, the SOC cannot be measured directly due to its structure, and so must be estimated using indirect measurements. In addition, the methods used to estimate SOC are highly dependent on the battery?s available capacity, known as the state of health (SOH), which degrades as the battery is used, resulting in a complex problem. In this paper, a novel adaptive battery health estimation method is proposed. The proposed method uses a dual-filter architecture in conjunction with the interacting multiple model (IMM) algorithm. The dual filter strategy allows for the model?s parameters to be updated while the IMM allows access to different degradation rates. The well-known Kalman filter (KF) and relatively new sliding innovation filter (SIF) are implemented to estimate the battery?s SOC. The resulting methods are referred to as the dual-KF-IMM and dual-SIF-IMM, respectively. As demonstrated in this paper, both algorithms show accurate estimation of the SOC and SOH of a lithium-ion battery under different cycling conditions. The results of the proposed strategies will be of interest for the safe and reliable operation of electrical systems, with particular focus on electric vehicles.

 Artículos similares

       
 
Li Wang, Baobao Li, Hongyu Bai, Hong Ding, Na Xu, Chaofan Yin, Jingjing Xiong, Zhiwei Yang, Xianfa Rao and Binbin Dong    
The pyrolytic carbon of polymer adsorbent resin (SAP) is used as a waste carbon source, which can be used as a porous carbon network via pyrolysis to remove surface sodium carbonate and other substances. In this paper, a ZnFe2O4/nitrogen-doped porous car... ver más
Revista: Coatings

 
Wanwan Xu, Huiying Cao, Xingyu Lin, Fuchun Shu, Jialu Du, Junzhou Wang and Junjie Tang    
The rapid development of the electric vehicle industry produces large amounts of retired power lithium-ion batteries, thus resulting in the echelon utilization technology of such retired batteries becoming a research hotspot in the field of renewable ene... ver más
Revista: Applied Sciences

 
Min Young Yoo, Jung Heon Lee, Joo-Ho Choi, Jae Sung Huh and Woosuk Sung    
This paper proposes a framework for accurately estimating the state-of-charge (SOC) and current sensor bias, with the aim of integrating it into urban air mobility (UAM) with hybrid propulsion. Considering the heightened safety concerns in an airborne en... ver más
Revista: Aerospace

 
Wongwan Jung, Jinkwang Lee and Daejun Chang    
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2) fuel gas supply system (FGSS), and manage the temperature conditions of the battery system. All systems... ver más

 
Wongwan Jung and Daejun Chang    
This study proposed a deep reinforcement learning-based energy management strategy (DRL-EMS) that can be applied to a hybrid electric ship propulsion system (HSPS) integrating liquid hydrogen (LH2) fuel gas supply system (FGSS), proton-exchange membrane ... ver más