ARTÍCULO
TITULO

Decomposition algorithm for linear programming problems without a block structure in the Everest computing environment

V.V. Voloshinov    

Resumen

The article describes decomposition method for solving linear programming problems in a general case when it is impossible or difficult to reveal the block structure (of the constraint matrix) used by the classic Danzig-Wulf or Benders decomposition algorithms. Instead, an arbitrary partition of the constraint matrix into a number of submatrices corresponding to groups of rows is used. As in the Danzig-Wolfe algorithm, one searches a maximum of a concave function (on dual variables) by a subgradient method. Iterative routine of solving the original problem includes the phases of solving sets of independent subproblems of a smaller dimension than the original one. Number of submatrices (and subproblems) depends on the dimension of the original problem and the computational power of the distributed environment, where parallel solving of above independent subproblems is done. In concrete term, it is proposed to use the optimization services deployed on the Everest platform, everest.distcomp.org. Programming of the algorithm and data exchange with solvers connected to Everest, may be done by AMPLX system based on algebraic optimization modeling language AMPL, ampl.com. Also, instead of the commercial translator AMPL, it is possible to use the Python interpreter and the freely available Pyomo package, pyomo.org, which provides interaction with AMPL-compatible solvers. The software implementation of the algorithm by Everest platform, allows to hope to get a noticeable acceleration when solving large-scale problems.

 Artículos similares

       
 
Qingyong Zhang, Changhuan Song and Yiqing Yuan    
Vehicle gearboxes are subject to strong noise interference during operation, and the noise in the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes are often conducted independently, overlooking their syn... ver más
Revista: Applied Sciences

 
Zhuofan Xu, Jing Yan, Guoqing Sui, Yanze Wu, Meirong Qi, Zilong Zhang, Yingsan Geng and Jianhua Wang    
High-voltage circuit breakers (HVCBs) handle the important tasks of controlling and safeguarding electricity networks. In the case of insufficient data samples, improving the accuracy of the traditional HVCB mechanical fault diagnosis method is difficult... ver más
Revista: Applied Sciences

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging... ver más
Revista: Applied Sciences

 
Dacheng Yu, Mingjun Zhang, Feng Yao and Jitao Li    
Variational Mode Decomposition (VMD) has typically been used in weak fault feature extraction in recent years. The problem analyzed in this study is weak fault feature extraction and the enhancement of AUV thrusters based on Artificial Rabbits Optimizati... ver más

 
Chi Han, Wei Xiong and Ronghuan Yu    
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of m... ver más
Revista: Aerospace