ARTÍCULO
TITULO

Design of Modified Phase Reversal Electrode in Broad-Band Electrooptic Modulators at 100 GHz

Hui    
K-W    
Wu    
B Y    
Choi    
Y M    
Peng    
J H    
Chiang    
K S    

Resumen

No disponible

 Artículos similares

       
 
Jinxiong Gao, Xu Geng, Yonghui Zhang and Jingbo Wang    
Underwater autonomous path planning is a critical component of intelligent underwater vehicle system design, especially for maritime conservation and monitoring missions. Effective path planning for these robots necessitates considering various constrain... ver más
Revista: Applied Sciences

 
Songyang Wang, Jianjun Ma, Chaosheng Wang, Fengjun Liu and Da Li    
The scouring effect is widely acknowledged as a primary contributor to the weakening in the bearing performance of offshore piles; it often results in asymmetric scour patterns around the pile. To meticulously examine the impact of three-dimensional asym... ver más
Revista: Applied Sciences

 
Mukhtar Fatihu Hamza    
Due to increased complexity and interactions between various subsystems, higher-order MIMO systems present difficulties in terms of stability and control performance. This study effort provides a novel, all-encompassing method for creating a decentralize... ver más
Revista: Algorithms

 
Abdullahi T. Sulaiman, Habeeb Bello-Salau, Adeiza J. Onumanyi, Muhammed B. Mu?azu, Emmanuel A. Adedokun, Ahmed T. Salawudeen and Abdulfatai D. Adekale    
The particle swarm optimization (PSO) algorithm is widely used for optimization purposes across various domains, such as in precision agriculture, vehicular ad hoc networks, path planning, and for the assessment of mathematical test functions towards ben... ver más
Revista: Algorithms

 
Zhiping Li, Yujiang Lu and Tianyu Pan    
DPS (distributed propulsion system) utilizing BLI (boundary-layer ingestion) has shown great potential for reducing the power consumption of sustainable AAM (advanced air mobility), such as BWB (blended-wing body) aircraft. However, the ingesting boundar... ver más
Revista: Aerospace