Inicio  /  Aerospace  /  Vol: 8 Par: 10 (2021)  /  Artículo
ARTÍCULO
TITULO

Towards Flocking Navigation and Obstacle Avoidance for Multi-UAV Systems through Hierarchical Weighting Vicsek Model

Xingyu Liu    
Chao Yan    
Han Zhou    
Yuan Chang    
Xiaojia Xiang and Dengqing Tang    

Resumen

Flocking navigation and obstacle avoidance in complex environments remain challenging for multiple unmanned aerial vehicle (multi-UAV) systems, especially when only one UAV (termed as information UAV) knows the predetermined path and the communication range is limited. To this end, we propose a hierarchical weighting Vicsek model (HWVEM). In this model, a hierarchical weighting mechanism and an obstacle avoidance mechanism are designed. Based on the hierarchical weighting mechanism, all the UAVs are divided into different layers, and assigned with different weights according to the layer to which they belong. The purpose is to align the rest of UAVs with the information UAV more efficiently. Subsequently, the obstacle avoidance mechanism that utilizes only the local information is developed to ensure the system safety in an environment filled with obstacles differing in size and shape. A series of simulations have been conducted to demonstrate the high performance of HWVEM in terms of convergence time, success rate, and safety.

 Artículos similares

       
 
Yilin Qu, Xiao Xie, Shucheng Zhang, Cheng Xing, Yong Cao, Yonghui Cao, Guang Pan and Baowei Song    
The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide... ver más

 
Paul Lee, Gerasimos Theotokatos and Evangelos Boulougouris    
Autonomous ships are expected to extensively rely on perception sensors for situation awareness and safety during challenging operations, such as reactive collision avoidance. However, sensor noise is inevitable and its impact on end-to-end decision-maki... ver más

 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Linling Wang, Xiaoyan Xu, Bing Han and Huapeng Zhang    
In this paper, multiple autonomous underwater vehicle (multi-AUV) formation control with obstacle avoidance ability in 3D complex underwater environments based on an event-triggered model predictive control (EMPC) is proposed. Firstly, multi-AUV motion m... ver más

 
Moon Hwan Kim, Teasuk Yoo, Seok Joon Park and Kyungwon Oh    
Autonomous Underwater Vehicles (AUVs) have emerged as pivotal tools for intricate underwater missions, spanning seafloor exploration to meticulous inspection of subsea infrastructures such as pipelines and cables. Although terrestrial obstacle avoidance ... ver más