Inicio  /  Aerospace  /  Vol: 6 Par: 5 (2019)  /  Artículo
ARTÍCULO
TITULO

Engineering Methodology for Student-Driven CubeSats

Abdulaziz Alanazi and Jeremy Straub    

Resumen

CubeSats are widely used by universities and research institutions all over the world. Their popularity is generally attributed to the use of low-cost components, free student labor and simple design. They have been shown to encourage Science, Technology, Engineering and Math (STEM) students to become involved in designing, implementing and testing a real functioning spacecraft system. Projects like this encourage students from different disciplines to team up to design and build CubeSats, providing interdisciplinary work experience. Participating students vary in their expertise in developing such systems. Some will work on the project for years while others are not willing to spend two or three consecutive semesters developing a CubeSat project. Despite their simplicity in design and low cost, CubeSats are considered great engineering systems for exploring space. Nevertheless, a large number of CubeSat projects fail due to having an unclear mission, ambiguous system requirements and a lack of documentation. Students need to have a clear vision of how to build a real CubeSat system that can be launched and that can function in space. Thus, this paper proposes engineering methodologies and tools to help students develop CubeSat systems. These tools can help students with planning, collecting, eliciting and documenting the requirements in a well-defined manner. This paper focuses on student-driven CubeSat projects designed by students and faculty members. Additionally, data is presented in this paper to identify the challenges and needs of CubeSat developers. Plans for future work are also discussed.

 Artículos similares

       
 
Filippo Giorcelli, Sergej Antonello Sirigu, Giuseppe Giorgi, Nicolás Faedo, Mauro Bonfanti, Jacopo Ramello, Ermanno Giorcelli and Giuliana Mattiazzo    
Among the challenges generated by the global climate crisis, a significant concern is the constant increase in energy demand. This leads to the need to ensure that any novel energy systems are not only renewable but also reliable in their performance. A ... ver más

 
Jiawei Zhang, Fenglei Han, Duanfeng Han, Jianfeng Yang, Wangyuan Zhao and Hansheng Li    
In the realm of ocean engineering and maintenance of subsea structures, accurate underwater distance quantification plays a crucial role. However, the precision of such measurements is often compromised in underwater environments due to backward scatteri... ver más

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Kichan Sim and Kangsu Lee    
A digital twin is a virtual model of a real-world structure (such as a device or equipment) which supports various problems or operations that occur throughout the life cycle of the structure through linkage with the actual structure. Digital twins have ... ver más

 
Mfowabo Maphosa, Wesley Doorsamy and Babu Paul    
The role of academic advising has been conducted by faculty-student advisors, who often have many students to advise quickly, making the process ineffective. The selection of the incorrect qualification increases the risk of dropping out, changing qualif... ver más
Revista: Algorithms