Inicio  /  Aerospace  /  Vol: 6 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Computational Analysis of 3D Lattice Structures for Skin in Real-Scale Camber Morphing Aircraft

Bashir Alsaidi    
Woong Yeol Joe and Muhammad Akbar    

Resumen

Conventional or fixed wings require a certain thickness of skin material selection that guarantees structurally reliable strength under expected aerodynamic loadings. However, skin structures of morphing wings need to be flexible as well as stiff enough to deal with multi-axial structural stresses from changed geometry and the coupled aerodynamic loadings. Many works in the design of skin structures for morphing wings take the approach either of only geometric compliance or a simplified model that does not fully represent 3D real-scale wing models. Thus, the main theme of this study is (1) to numerically identify the multi-axial stress, strain, and deformation of skin in a camber morphing wing aircraft under both structure and aerodynamic loadings, and then (2) to show the effectiveness of a direct approach that uses 3D lattice structures for skin. Various lattice structures and their direct 3D wing models have been numerically analyzed for advanced skin design.

 Artículos similares

       
 
?iga Unuk and Milan Kuhta    
A nonlinear semi-numeric and finite element analysis of three-point bending tests of notched polymer fiber-reinforced concrete prisms was performed. The computational and experimental results were compared in terms of the load-displacement behavior. The ... ver más
Revista: Applied Sciences

 
Seong Hyun Hong, Young Jin Kim, Soo Hyung Park, Sung Nam Jung and Ki Ro Kim    
The air and structural loads of a 5-ton class light helicopter (LH) rotor in a 2.24 g pull-up maneuver are investigated using a coupling between the computational structural dynamics (CSD) and computational fluid dynamics (CFD) methods. The LH rotor is c... ver más
Revista: Aerospace

 
Yalin Dai, Zhouwei Fan, Jian Xu, You He and Xiongqing Yu    
A special feature of airbreathing hypersonic aircraft is the complex coupling between aerodynamic and propulsive performances. This study presents a rapid analysis methodology for the integration of these two critical aspects in the conceptual design of ... ver más
Revista: Aerospace

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace