Inicio  /  Aerospace  /  Vol: 8 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

Neural Nonlinear Autoregressive Model with Exogenous Input (NARX) for Turboshaft Aeroengine Fuel Control Unit Model

Maria Grazia De Giorgi    
Luciano Strafella and Antonio Ficarella    

Resumen

One of the most important parts of a turboshaft engine, which has a direct impact on the performance of the engine and, as a result, on the performance of the propulsion system, is the engine fuel control system. The traditional engine control system is a sensor-based control method, which uses measurable parameters to control engine performance. In this context, engine component degradation leads to a change in the relationship between the measurable parameters and the engine performance parameters, and thus an increase of control errors. In this work, a nonlinear model predictive control method for turboshaft direct fuel control is implemented to improve engine response ability also in presence of degraded conditions. The control objective of the proposed model is the prediction of the specific fuel consumption directly instead of the measurable parameters. In this way is possible decentralize controller functions and realize an intelligent engine with the development of a distributed control system. Artificial Neural Networks (ANN) are widely used as data-driven models for modelling of complex systems such as aeroengine performance. In this paper, two Nonlinear Autoregressive Neural Networks have been trained to predict the specific fuel consumption for several transient flight maneuvers. The data used for the ANN predictions have been estimated through the Gas Turbine Simulation Program. In particular the first ANN predicts the state variables based on flight conditions and the second one predicts the performance parameter based on the previous predicted variables. The results show a good approximation of the studied variables also in degraded conditions.

 Artículos similares

       
 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang     Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so... ver más

 
Michalis K. Chondros, Anastasios S. Metallinos and Andreas G. Papadimitriou    
Ensuring sea surface tranquility within port basins is of paramount importance for safe and efficient port operations and vessels? accommodation. The present study aims to introduce a robust numerical model based on mild-slope equations, capable of accur... ver más

 
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal    
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f... ver más
Revista: Applied Sciences

 
Kalyan Chatterjee, M. Raju, N. Selvamuthukumaran, M. Pramod, B. Krishna Kumar, Anjan Bandyopadhyay and Saurav Mallik    
According to global data on visual impairment from the World Health Organization in 2010, an estimated 285 million individuals, including 39 million who are blind, face visual impairments. These individuals use non-contact methods such as voice commands ... ver más
Revista: Information