Inicio  /  Aerospace  /  Vol: 10 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Structural Optimization of AerMet100 Steel Torsion Spring Based on Strain Fatigue

Meng Wang    
Hongen Li    
Hu Chen    
Xingbo Fang    
Enze Zhu    
Pujiang Huang    
Xiaohui Wei and Hong Nie    

Resumen

The torsion spring of a carrier-based aircraft landing gear is a key component, which is normally manufactured out of AerMet100 ultra-high-strength steel. The takeoff and landing performance is greatly influenced by its bearing capacity and structural durability. To carry out the structure anti-fatigue design, it is necessary to investigate the influence of the spring structure features on its fatigue life, based on which the strain fatigue analysis and parameter optimization design of the torsion spring are executed. Through the finite element analysis conducted with ABAQUS, it was determined that there exists serious stress concentration in the relief groove. Based on the theory of strain fatigue, the fatigue life of the torsion spring was obtained, and the fracture position and lifecycle were consistent with the test results. A structure optimization platform based on a parametric method was established. Samples were selected through the DOE (design of experiment), and a surrogate model was established based on RBF (radial basis functions), followed by optimization using MIGA (multi-island genetic algorithms). With the parameter optimization of the relief groove, the structure was reconstituted and reanalyzed. From the simulation results, the peak strain was reduced by 30.7%, while the fatigue life was increased by 86.2% under the same loads and constraints. Moreover, laboratory tests were performed on the torsion spring after reconstruction, which showed that the fatigue life increases by 85.6% after optimization. The method presented in this paper can provide theoretical support and technical guidance for the application and structural optimization of ultra-high-strength steel structures.

 Artículos similares

       
 
Touraj Farsadi, Majid Ahmadi, Melin Sahin, Hamed Haddad Khodaparast, Altan Kayran and Michael I. Friswell    
In the field of aerospace engineering, the design and manufacturing of high aspect ratio composite wings has become a focal point of innovation and efficiency. These long, slender wings, constructed with advanced materials such as carbon fiber and employ... ver más
Revista: Aerospace

 
Tomasz Rogala, Mateusz Scieszka, Andrzej Katunin and Sandris Rucevskis    
Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement ... ver más
Revista: Applied Sciences

 
Stefan Peev, Ivaylo Parushev and Ralitsa Yotsova    
Undecalcified bone histology is a valuable diagnostic method for studying bone microarchitecture and provides information on bone formation, resorption, and turnover. It has various clinical and research applications. Toluidine blue has been widely adopt... ver más
Revista: Applied Sciences

 
Ping Xiao and Haiyan Wang    
In response to the optimal operation of ocean container ships, this paper presents a two-level planning model that takes into account carbon tax policies. This model translates the CO2 emissions of ships into carbon tax costs and aims to minimize the ove... ver más
Revista: Applied Sciences

 
Chen Chen, Hong Zhou, Zhengda Lv and Ziqiu Li    
Plated grillage with combined openings was susceptible to complex failure behaviors as the main load-bearing structure of the superstructure on passenger ships subjected to deck loads. Additionally, the deformation and stresses generated during the weldi... ver más