Inicio  /  Aerospace  /  Vol: 9 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Automated Piping in an Airbus A320 Landing Gear Bay Using Graph-Based Design Languages

Moritz Neumaier    
Stefan Kranemann    
Bernd Kazmeier and Stephan Rudolph    

Resumen

System design in an aircraft is still a costly, manual and iterative approach. One major cost driver of changes in system installation are design efforts for creating new pipes in an earlier stage and the costs accumulated during the in service life. To reduce these costs and the time to market, an automation approach with an integrated design optimization encoded in graph-based design languages and executable in a design compiler is proposed. To generate the pipe work automatically, a set of input data (e.g., start- and end-points of a pipe with tangents and fixing positions) is given by the user. It also contains, among others, the weightings for the optimization criteria (e.g., length of the pipe resp. the weight vs. the number of bends) to influence the evaluation of the generated pipes and thereby the final solution. As an initial step in the automatic pipe generation process, a route through the installation space is searched. Subsequently, the installation space is simplified and a respective minimal distance to each obstacle which a pipe should satisfy is added. Then for each pipe an initial solution is estimated and each pipe is optimized by a simulated annealing algorithm. At last, all given requirements are automatically verified. A carried out investigation indicates a polynomial runtime behaviour of the algorithm. The capabilities of the newly developed automated piping are demonstrated on the pipe work in an Airbus A320 landing gear bay.

 Artículos similares

       
 
Shaohang Yan, Mingchen Qiang, Qi Zhao, Yu Hou and Tianwei Lai    
In high-speed motors, there is a huge amount of heat generation from core and winding losses, which may result in thermal failures or motor performance deterioration. In the prevention of heat accumulation, efficient cooling technology is critical for sm... ver más
Revista: Applied Sciences

 
Gao Huang, Chengjun Qiu, Mengtian Song, Wei Qu, Yuan Zhuang, Kaixuan Chen, Kaijie Huang, Jiaqi Gao, Jianfeng Hao and Huili Hao    
Cavitation is typically observed when high-pressure submerged water jets are used. A composite nozzle, based on an organ pipe, can increase shear stress on the incoming flow, significantly enhancing cavitation performance by stacking Helmholtz cavities i... ver más
Revista: Water

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Tian Wang, Zhenbo Liu, Jixing Li, Yu Liu, Xingyu Ma and Jiong Yang    
Manually preparing the data for the analysis of the calculation of a pipe network of air-cooled turbine blades is inefficient. In this paper, a method to adaptively divide the blade model and extract data of the flow units is proposed. In this method, th... ver más
Revista: Aerospace

 
Yazheng Ren, Huiying Zhang, Xinhua Wang, Zhanfei Gu, Linie Fu and Yang Cheng    
Currently, most of the studies using optimization algorithms to mitigate the urban flooding problem have no more than three optimization objectives, and few of them take the operation status of the traditional drainage system as one of the optimization o... ver más
Revista: Water