Inicio  /  Aerospace  /  Vol: 9 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Preliminary Design and Analysis of Supersonic Business Jet Engines

Timo Schlette and Stephan Staudacher    

Resumen

Currently projected supersonic business jets target selected supersonic flight missions with Mach numbers of about 1.4 and a larger number of long-range subsonic flight missions. They form a new type of aircraft that is specially tailored to these requirements. The question arises as to which engine configurations and technology levels are required to support these new applications. This is addressed firstly by exploring the design space of potential working cycles. An aircraft model is used to translate the results of the cycle study into an expected aircraft range. An optimal core engine and fan configuration result from the cycle study and the derived mission ranges. The preliminary design of the low-pressure components is investigated in the second step based on the optimal core configuration. The highest non-dimensional parameters are encountered in subsonic flight conditions. The highest dimensional parameters are encountered in supersonic high-altitude flight conditions. High-overall-efficiency configurations do not result in optimal aircraft ranges. There is an optimal number of two fan stages and a specific thrust of about 300 m/s, resulting in a maximum aircraft range that is 11% superior to that achievable with a single-stage fan. A fan hub-to-tip ratio range that is comparable to that of military fans is desirable, with an aerodynamic lower limit around 0.37. The low-pressure turbine stage count is a compromise between turbine mass and size.

 Artículos similares

       
 
Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti TammaddShow full author listremoveHide full author list    
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-v... ver más
Revista: Aerospace

 
Zikang Jin, Zonghan Yu, Fanshuo Meng, Wei Zhang, Jingzhi Cui, Xiaolong He, Yuedi Lei and Omer Musa    
The parametric design method is widely utilized in the preliminary design stage for hypersonic vehicles; it ensures the fast iteration of configuration, generation, and optimization. This study proposes a novel parametric method for a wide-range, wing-mo... ver más
Revista: Aerospace

 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace

 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace

 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace