Inicio  /  Aerospace  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Scale Effect Assessment of Innovative 3D-Printed Honeycomb under Quasi-Static Compression

Marco Menegozzo    
Andrés Cecchini    
Ryan Christian Ogle    
Uday Kumar Vaidya    
Isaac Acevedo-Figueroa and Jaine A. Torres-Hernández    

Resumen

Honeycomb cores are widely used in the aerospace and automotive fields as a part of protective structures. Unfortunately, standard prismatic honeycomb cores offer a limited amount of energy absorption under lateral loads and suffer from degradation of their impact-deadening properties when their dimensional scale is increased. In this work, a multiscale study on energy absorption under quasi-static load is carried out on 3D-printed honeycomb core samples constituted by a variable section and compared to the cases of standard hexagonal honeycomb samples having the same mass and external dimensions. When doubling the dimensional scale in the case of lateral loads, the novel core geometry showed a substantial absence of specific energy absorption degradation, whereas the hexagonal core suffered from a 12.2%-degradation. Furthermore, by increasing the dimensional scale, the novel core geometry shows a delay in the densification onset. The variable-core geometry showed an average increase, in terms of energy absorption under lateral loads, of 46.8% for the regular scale and 71.4% for the double scale. Under axial loads, a 12.4%-decrease in energy absorption was observed for the samples with novel geometry, which, nevertheless, showed a relatively constant profile of reaction force under compression: this property could potentially allow it to avoid pre-crushing.

 Artículos similares

       
 
Feng Tian, Mengjiao Wang and Xiaopei Liu    
Aiming at solving the problems of local halo blurring, insufficient edge detail preservation, and serious noise in traditional image enhancement algorithms, an improved Retinex algorithm for low-light mine image enhancement is proposed. Firstly, in HSV c... ver más
Revista: Applied Sciences

 
Yong Wang, Kongcheng Zuo, Peng Guo, Kun Zhao and Victor Feliksovich Kopiev    
Reducing the tonal noise from airfoil instabilities has attracted significant interest from the aeronautical community in the past few years. The aim of this paper is to investigate the effect of structured porous trailing edges on the tonal noise reduct... ver más
Revista: Applied Sciences

 
Malgorzata Olszowy-Tomczyk and Dorota Wianowska    
Concern for the future of the next generation leads to the search for alternative solutions for the proper management of materials considered as useless waste. This study fits into this research trend. Its aim is to demonstrate the potential of walnut hu... ver más
Revista: Applied Sciences

 
Bojan Milovanovic, Predrag Vojt, Budo Zindovic, Vladan Kuzmanovic and Ljubodrag Savic    
This paper presents a methodology for estimation of hydrodynamic loads acting on the bottom and at the walls of a stilling basin of a stepped chute with converging walls, based on the pressure measurements at the selected points of a scale model. This is... ver más
Revista: Water

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más