Inicio  /  Aerospace  /  Vol: 10 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Model Predictive Control Based Washout Algorithm Design for Flight Simulator Upset Prevention and Recovery Training

Yu Tong    
Haoyun Zhou    
Zhao Wu    
Qifu Li and Bei Lu    

Resumen

To migrate Loss of Control In-flight, the number one cause of aviation fatalities, pilots need to undergo upset prevention and recovery training with flight simulators. The fidelity of a moving base flight simulator is greatly dependent on the washout algorithm of the Stewart platform, which may reach the workspace limits when simulating the aircraft recovery from upset conditions. In this paper, a washout algorithm optimal design method based on the model predictive control technique is proposed for flight simulator upset prevention and recovery training. The parameters of the washout algorithm are calculated directly based on the platform model, and the system limits are explicitly taken into account. The human perception model is incorporated into the optimization problem, for which the objective is to minimize the pilot?s perceived motion mismatch between the real flight and the simulator training. Simulations are conducted and compared with the classical filter-based washout algorithm. Responses of the flight simulator model show that the proposed method can improve the motion cueing effect when the aircraft is in upset conditions.

 Artículos similares

       
 
Xiaobin Qian, Helong Shen, Yong Yin and Dongdong Guo    
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The no... ver más

 
Dongkeun Lee, Chaeog Lim, Sang-jin Oh, Minjoon Kim, Jun Soo Park and Sung-chul Shin    
Capsizing accidents are regarded as marine accidents with a high rate of casualties per accident. Approximately 89% of all such accidents involve small ships (vessels with gross tonnage of less than 10 tons). Stability calculations are critical for asses... ver más

 
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang    
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine... ver más
Revista: Applied Sciences

 
Yongyong Zhao, Jinghua Wang, Guohua Cao and Xu Yao    
This study introduces a reduced-order leg dynamic model to simplify the controller design and enhance robustness. The proposed multi-loop control scheme tackles tracking control issues in legged robots, including joint angle and contact-force regulation,... ver más
Revista: Applied Sciences

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water