Inicio  /  Aerospace  /  Vol: 10 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Characteristics of a Heat Exchanger in a Liquid Rocket Engine Using Conjugate Heat Transfer Coupling with Open-Source Tools

Wooseok Jeong    
Seungeon Jang and Hong-Jip Kim    

Resumen

Since a heat exchanger used in a gas generator of an open-cycle liquid rocket engine was operated in a high-temperature environment, the coupled analysis for heat transfer characteristics and structural integrity should be performed simultaneously. For these reasons, a numerical analysis of the heat exchanger in a liquid rocket engine was performed to elucidate the effects of heat transfer and structural deformation simultaneously using conjugate heat transfer (CHT) analysis and open-source tools. For the baseline heat exchanger, which had an inner helically coiled tube with nine turns (Nc=9" role="presentation" style="position: relative;">????=9Nc=9 N c = 9 ), the heat transfer characteristics were investigated and findings showed that the heat transfer performance was reduced from the sixth turn. Further analysis was performed to examine the effect of the number of turns in terms of heat flux and the corresponding pressure drop and the weight of the structure. The results indicated that the heat exchanger with Nc=3" role="presentation" style="position: relative;">????=3Nc=3 N c = 3 had a significantly reduced outlet temperature due to an excessively shortened flow residence time. The heat exchanger with Nc=6" role="presentation" style="position: relative;">????=6Nc=6 N c = 6 showed an outlet temperature similar to that of the baseline; it also presented advantages in terms of the pressure drop and structure weight. In addition, the thermal deformation and stress caused by temperature changes were numerically investigated to consider the structural integrity of the heat exchanger with Nc=3,6,9" role="presentation" style="position: relative;">????=3,6,9Nc=3,6,9 N c = 3,6 , 9 . Further numerical analyses were performed at various flow rates. As the flow rate of helium increased, the amount of heat received from the high-temperature exhaust gas from the gas generator increased but the outlet temperature of helium decreased gradually. Finally, the temperature difference between the outer and inner walls increased due to the high heat flux in the region around the inlet, resulting in an increase in thermal stress. Based on these results, the optimal shape and flow rate of the system were identified. Furthermore, the heat transfer performance was found to correlate with the flow characteristics of the coiled tube.

 Artículos similares

       
 
Ping Liu, Wentao Shi, Bo Sun, Qian Wang, Xiaokun Xie and Changqing Li    
Burial stone relics remain in a humid, semi-enclosed environment for long periods, and temperature and humidity variations can cause deterioration acceleration. Yang Can?s tomb was selected as the research object, and field monitoring and simulations wer... ver más
Revista: Applied Sciences

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace

 
Shichao Wang, Jun Song, Junru Guo, Yanzhao Fu, Yu Cai and Linhui Wang    
As one of the most significant disturbance sources in the upper marine environment of the South China Sea, tropical cyclones (typhoons) serve as a typical research subject for investigating the energy transfer process between the ocean and atmosphere. Ut... ver más
Revista: Water

 
Xiaolei Liu, Kan Wang, Yuru He, Yang Ming and Hao Wang    
To extend initial ignition-related fire prevention in ship engine room, this work presents a case study of marine diesel leakage for identifying accidental ignition by hot surface. Based on a self-designed experimental platform, a full-scale innovative e... ver más

 
Anil Basaran and Ali Cemal Benim    
Nowadays, the demand for obtaining high heat flux values in small volumes has increased with the development of technology. Condensing flow inside mini- and microchannels has been becoming a promising solution for refrigeration, HVAC, air-conditioning, h... ver más
Revista: Applied Sciences