Inicio  /  Aerospace  /  Vol: 5 Par: 3 (2018)  /  Artículo
ARTÍCULO
TITULO

Turbine Blade Tip External Cooling Technologies

Song Xue and Wing F. Ng    

Resumen

This article provides an overview of gas turbine blade tip external cooling technologies. It is not the intention to comprehensively review all the publications from past to present. Instead, selected reports, which represent the most recent progress in tip cooling technology in open publications, are reviewed. The cooling performance on flat tip and squealer tip blades from reports are compared and discussed. As a generation conclusion, tip clearance dimension and coolant flow rate are found as the most important factors that significant influence the blade tip thermal performance was well as the over tip leakage (OTL) flow aerodynamics. However, some controversial trends are reported by different researchers, which could be attributed to various reasons. One of the causes of this disagreement between different reports is the lacking of unified parametric definition. Therefore, a more appropriate formula of blowing ratio definition has been proposed for comparison across different studies. The last part of the article is an outlook of the new techniques that are promising for future tip cooling research. As a new trend, the implementation of artificial intelligence techniques, such as genetic algorithm and neural network, have become more popular in tip cooling optimization, and they will bring significantly changes to the future turbine tip cooling development.

 Artículos similares

       
 
Li Zou, Haowen Cheng and Qianhui Sun    
Wind turbine blades are readily damaged by the workplace environment and frequently experience flaws such as surface peeling and cracking. To address the problems of cumbersome operation, high cost, and harsh application conditions with traditional damag... ver más
Revista: Applied Sciences

 
Tian Wang, Zhenbo Liu, Jixing Li, Yu Liu, Xingyu Ma and Jiong Yang    
Manually preparing the data for the analysis of the calculation of a pipe network of air-cooled turbine blades is inefficient. In this paper, a method to adaptively divide the blade model and extract data of the flow units is proposed. In this method, th... ver más
Revista: Aerospace

 
Hamid R. Kaviani and Mohammad Moshfeghi    
Blade optimization methods are crucial for wind turbine design. In this research, a new set of values for the parameters of the Particle Swarm Optimization (PSO) method is proposed, and its effects on the enhancement of the power generation of the NREL W... ver más
Revista: Aerospace

 
Jörg R. Riccius and Evgeny B. Zametaev    
A numerical turbine-blade fatigue-life analysis method is suggested. This method comprises a stationary thermal 3D finite element (FE) analysis of the hot run for the combined high-cycle fatigue (HCF) and creep analysis, and a follow-on (one-way coupled)... ver más
Revista: Aerospace

 
Hongxin Zhu, Yimin Zhu, Xiaoyi Zhang, Jian Chen, Mingyu Luo and Weiguang Huang    
Performing online damage evaluation of blades subjected to complex cyclic loads based on the operating state of a gas turbine enables real-time reflection of a blade?s damage condition. This, in turn, facilitates the achievement of predictive maintenance... ver más
Revista: Aerospace