Inicio  /  Aerospace  /  Vol: 9 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Linear Pseudospectral Method with Chebyshev Collocation for Optimal Control Problems with Unspecified Terminal Time

Yang Li    
Wanchun Chen and Liang Yang    

Resumen

In this paper, a linear Chebyshev pseudospectral method (LCPM) is proposed to solve the nonlinear optimal control problems (OCPs) with hard terminal constraints and unspecified final time, which uses Chebyshev collocation scheme and quasi-linearization. First, Taylor expansion around the nonlinear differential equations of the system is used to obtain a set of linear perturbation equations. Second, the first-order necessary conditions for OCPs with these linear equations and unspecified terminal time are derived, which provide the successive correction formulas of control and terminal time. Traditionally, these formulas are linear time varying and cannot be solved in an analytical manner. Third, Lagrange interpolation, whose supporting points are orthogonal Chebyshev?Gauss?Lobatto (CGL), is employed to discretize the resulting problem. Therefore, a series of analytical correction formulas are successfully derived in approximating polynomial space. It should be noted that Chebyshev approximation is close to the best polynomial approximation, and CGL points can be solved in closed form. Finally, LCPM is applied to the air-to-ground missile guidance problem. The simulation results show that it has high computational efficiency and convergence rate. A comparison with the other typical OCP solvers is provided to verify the optimality of the proposed algorithm. In addition, the results of Monte Carlo simulations are presented, which show that the proposed algorithm has strong robustness and stability. Therefore, the proposed method has potential to be onboard application.

 Artículos similares

       
 
Pablo Brusola, Sergio Garcia-Nieto, Jose Vicente Salcedo, Miguel Martinez and Robert H. Bishop    
This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting p... ver más
Revista: Aerospace

 
Tianlei Fu, Lianwu Guan, Yanbin Gao and Chao Qin    
This paper investigates an anticipatory activation anti-windup approach based on Linear Active Disturbance Rejection Control (LADRC) to address the influences of accelerated saturation on the actuators in a Miniaturized Inertial Stabilized Platform (MISP... ver más

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Bhawnath Tiwari, Kenny Jeanmonod, Paolo Germano, Christian Koechli, Sofia Lydia Ntella, Zoltan Pataky, Yoan Civet and Yves Perriard    
Plantar pressure plays a crucial role in the pathogenesis of foot ulcers among patients with diabetes and peripheral polyneuropathy. Pressure relief is a key requirement for both the prevention and treatment of plantar ulcers. Conventional medical practi... ver más