Inicio  /  Aerospace  /  Vol: 11 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Dynamic Response Mechanism of Ethanol Atomization?Combustion Instability under a Contrary Equivalence Ratio Adjusting Trend

Chengfei Tao    
Rongyue Sun    
Yichen Wang    
Yang Gao    
Lin Meng    
Liangbao Jiao    
Shaohua Liang and Ling Chen    

Resumen

This study experimentally explored the effects of equivalence ratio settings on ethanol fuel combustion oscillations with a laboratory-scale combustor. A contrary flame equivalence ratio adjusting trend was selected to investigate the dynamic characteristics of an ethanol atomization burner. Research findings denote that optimizing the equivalence ratio settings can prevent the occurrence of combustion instability in ethanol burners. In the combustion chamber, the sound pressure amplitude increased from 138 Pa to 171 Pa and eventually dropped to 38 Pa, as the equivalence ratio increased from 0.45 to 0.90. However, the sound pressure amplitude increased from 35 Pa to 199 Pa and eventually dropped to 162 Pa, as the equivalence ratio decreased from 0.90 to 0.45. The oscillation frequency of the ethanol atomization burner presents a migration characteristic; this is mainly due to thermal effects associated with changes in the equivalence ratio that increase/decrease the speed of sound in burnt gases, leading to increased/decreased oscillation frequencies. The trend of the change in flame heat release rate is basically like that of sound pressure, but the time-series signal of the flame heat release rate is different from that of sound pressure. It can be concluded that the reversible change in equivalence ratio will bring significant changes to the amplitude of combustion oscillations. At the same time, the macroscopic morphology of the flame will also undergo significant changes. The flame front length decreased from 25 cm to 18 cm, and the flame frontal angle increased from 23 to 42 degrees when the equivalence ratio increased. A strange phenomenon has been observed, which is that there is also sound pressure fluctuation inside the atomized air pipeline, and it presents a special square waveform. This study explored the equivalence ratio adjusting trends on ethanol combustion instability, which will provide the theoretical basis for the design of ethanol atomization burners.

 Artículos similares

       
 
Yuan Wei, Renliang Chen, Ye Yuan and Luofeng Wang    
This study assesses the influence of engine dynamic characteristics on helicopter handling quality during hover and low-speed forward flight. First, we construct the helicopter?engine coupling model (HECM) based on the power-matching relationship between... ver más
Revista: Aerospace

 
Ziqiang Hu, Lei Wei, Lin Yang, Yansong Wang and Yuanpeng Fan    
Structural vibration has always been a major concern in the engineering field. A dynamic vibration absorber in the form of contacts with adjustable stiffness (CDVA) offers effective vibration suppression and can improve conventional dynamic vibration abs... ver más
Revista: Aerospace

 
Manigandan Paneer, Josip Ba?ic, Damir Sedlar, ?eljan Lozina, Nastia Degiuli and Chong Peng    
This study investigates the impact of fluid loads on the elastic deformation and dynamic response of linear structures. A weakly coupled modal solver is presented, which involves the solution of a dynamic equation of motion with external loads. The mode ... ver más

 
Jianwei Yang, Changdong Liu, Peishan Liu and Yue Zhao    
Cracks are one of the most common diseases of tunnel lining, and the structural dynamic response can be used to assess the health of a tunnel. Hence, this paper investigates the dynamic response of shield tunnel lining with a partly circumferential crack... ver más
Revista: Applied Sciences

 
Lin Sun, Junchao Li and Haoyu Lin    
Earthquakes impact the stability of municipal solid waste (MSW) landfills, especially those with high water levels, and may further lead to disastrous landslides. Numerical analysis offers an efficient and cost-effective way to study the seismic stabilit... ver más
Revista: Applied Sciences