Inicio  /  Aerospace  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Kriging-Based Framework Applied to a Multi-Point, Multi-Objective Engine Air-Intake Duct Aerodynamic Optimization Problem

Przemyslaw S. Drezek    
Slawomir Kubacki and Jerzy Zóltak    

Resumen

The forecasted growth in dynamic global air fleet size in the coming decades, together with the need to introduce disruptive technologies supporting net-zero emission air transport, demands more efficient design and optimization workflows. This research focuses on developing an aerodynamic optimization framework suited for multi-objective studies of small aircraft engine air-intake ducts in multiple flight conditions. In addition to the refinement of the duct?s performance criteria, the work aims to improve the economic efficiency of the process. The optimization scheme combines the advantages of Kriging-based Efficient Global Optimization (EGO) with the Radial Basis Functions (RBF)-based mesh morphing technique and the Chebyshev-type Achievement Scalarizing Function (ASF) for handling multiple objectives and design points. The proposed framework is applied to an aerodynamic optimization study of an I-31T aircraft turboprop engine intake system. The workflow successfully reduces the air-duct pressure losses and mitigates the flow distortion at the engine compressor?s front face in three considered flight phases. The results prove the framework?s potential for solving complex multi-point air-intake duct problems and the capacity of the ASF-based formulation to guide optimization toward the designer?s preferred objective targets.

 Artículos similares

       
 
Saile Zhang, Qingzhen Yang, Rui Wang and Xufei Wang    
The use of traditional optimization methods in engineering design problems, specifically in aerodynamic and infrared stealth optimization for engine nozzles, requires a large number of objective function evaluations, therefore introducing a considerable ... ver más
Revista: Aerospace

 
Christoforos S. Rekatsinas, Dimitris K. Dimitriou and Nikolaos A. Chrysochoidis    
The present paper investigates the design process and the dimensioning of a tailless type-C composite sandwich unmanned aerial vehicle (UAV). The objective is to investigate an innovative aircraft configuration which exceeds the standard approach of ribs... ver más
Revista: Aerospace

 
Aliyye Kara, Ibrahim Eksin and Ata Mugan    
The design optimization of structures can be conducted in either the time domain or the frequency domain. The frequency domain approach is advantageous compared to its time domain counterpart, especially if the degree of freedom is large, the objectives ... ver más
Revista: Applied Sciences

 
Tomasz Rogala, Mateusz Scieszka, Andrzej Katunin and Sandris Rucevskis    
Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement ... ver más
Revista: Applied Sciences

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace