Inicio  /  Aerospace  /  Vol: 10 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Process to Produce Ti Parts from Powder Metallurgy with Advanced Properties for Aeronautical Applications

Tamas Miko    
Daniel Petho    
Greta Gergely    
Dionysios Markatos and Zoltan Gacsi    

Resumen

Titanium and its alloys have excellent corrosion resistance, heat, and fatigue tolerance, and their strength-to-weight ratio is one of the highest among metals. This combination of properties makes them ideal for aerospace applications; however, high manufacturing costs hinder their widespread use compared to other metals such as aluminum alloys and steels. Powder metallurgy (PM) is a greener and more cost and energy-efficient method for the production of near-net-shape parts compared to traditional ingot metallurgy, especially for titanium parts. In addition, it allows us to synthesize special microstructures, which result in outstanding mechanical properties without the need for alloying elements. The most commonly used Ti alloy is the Ti6Al4V grade 5. This workhorse alloy ensures outstanding mechanical properties, demonstrating a strength which is at least twice that of commercially pure titanium (CP-Ti) grade 2 and comparable to the strength of hardened stainless steels. In the present research, different mixtures of both milled and unmilled Cp-Ti grade 2 powder were utilized using the PM method, aiming to synthesize samples with high mechanical properties comparable to those of high-strength alloys such as Ti6Al4V. The results showed that the fine nanoparticles significantly enhanced the strength of the material, while in several cases the material exceeded the values of the Ti6Al4V alloy. The produced sample exhibited a maximum compressive yield strength (1492 MPa), contained 10 wt.% of fine (milled) particles (average particle size: 3 µm) and was sintered at 900 °C for one hour.

 Artículos similares

       
 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Yafang Liu, Lu Zhang, Ye Tian, Weiwei Zhang, Junyue Tang, Jiahang Zhang, Zhangqing Duan and Jie Ji    
Martian rocks contain crucial information about the genesis of Mars and the historical evolution of Martian climate change. Consequently, extracting and examining Martian rocks are pivotal in advancing our comprehensive understanding of the red planet. H... ver más
Revista: Aerospace

 
Prashanth Barla, Hemalatha Shivarama, Ganesan Deepa and Ujjwal Ujjwal    
Hybrid magnetic tunnel junction/complementary metal oxide semiconductor (MTJ/CMOS) circuits based on in-memory-computation (IMC) architecture is considered as the next-generation candidate for the digital integrated circuits. However, the energy consumpt... ver más

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Sekato Maremane, Gladys Belle and Paul Oberholster    
Rivers in Africa have experienced dire pollution as a result of the poor management of wastewater effluent emanating from water resource recovery facilities (WRRFs). An integrated wastewater resource recovery model was developed and applied to identify i... ver más
Revista: Water