Inicio  /  Aerospace  /  Vol: 10 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Time-Series-Data Interpolation Applied to Boundary-Layer Profiles Measured on Different Flights

Hidemi Takahashi    
Mitsuru Kurita    
Hidetoshi Iijima and Seigo Koga    

Resumen

Turbulent boundary-layer profiles on an aircraft surface were measured during flight by pitot rakes in an experiment at subsonic speeds. Because separate flights have different flight sequences in terms of time, it is not easy to compare boundary-layer profiles measured on different flights with the corresponding premised conditions directly. Using one flight as a reference, this paper proposes a method to find the closest flight condition for each time instance from data from other flights by calculating a residual norm in combinations of flight variables. The results show that the proposed method successfully finds the best matches of the time instances from the second flight with those of the first flight. In addition, applying the interpolation method using response surface methodology further improves the accuracy of evaluation in the flight range of Mach 0.4 to Mach 0.8. The total uncertainty level of the proposed interpolation method was found to be 5.7%. Although this level of uncertainty is expected to be reduced, the effectiveness of the proposed interpolation method was presented in conjunction with an evaluation of its applicability to determine the riblet effect in reducing skin-friction drag qualitatively.

 Artículos similares

       
 
Chenglou Liu, Fangfang Xie and Tingwei Ji    
Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To th... ver más
Revista: Aerospace

 
Petri Toivanen, Pekka Janhunen, Jarmo Kivekäs and Meri Mäkelä    
A new method of producing robust multi-wire tethers for Coulomb drag applications was developed. The multi-wire structure required for redundancy against the micrometeoroid flux of the space environment is realised through the method of wire twist bondin... ver más
Revista: Aerospace

 
Yucheng Yang, Guohua Xu, Yongjie Shi and Zhiyuan Hu    
This study develops a hybrid solver with reversed overset assembly technology (ROAT), a viscous vortex particle method (VVPM), and a CFD program based on the URNS method, in order to study the aerodynamic and acoustic characteristics of coaxial rigid rot... ver más
Revista: Aerospace

 
Karolina Krajcek Nikolic, Petar Papoci, Dario Nikolic and Bruno Antulov-Fantulin    
Fuel burn during the actual route flown is an important indicator of aircraft operational efficiency. This study aims to assess and systematically evaluate the method for fuel consumed during flights using data from the automatic dependent surveillance?b... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace