Inicio  /  Aerospace  /  Vol: 4 Par: 2 (2017)  /  Artículo
ARTÍCULO
TITULO

Good Code Sets from Complementary Pairs via Discrete Frequency Chips

Ravi Kadlimatti and Adly T. Fam    

Resumen

It is shown that replacing the sinusoidal chip in Golay complementary code pairs by special classes of waveforms that satisfy two conditions, symmetry/anti-symmetry and quazi-orthogonality in the convolution sense, renders the complementary codes immune to frequency selective fading and also allows for concatenating them in time using one frequency band/channel. This results in a zero-sidelobe region around the mainlobe and an adjacent region of small cross-correlation sidelobes. The symmetry/anti-symmetry property results in the zero-sidelobe region on either side of the mainlobe, while quasi-orthogonality of the two chips keeps the adjacent region of cross-correlations small. Such codes are constructed using discrete frequency-coding waveforms (DFCW) based on linear frequency modulation (LFM) and piecewise LFM (PLFM) waveforms as chips for the complementary code pair, as they satisfy both the symmetry/anti-symmetry and quasi-orthogonality conditions. It is also shown that changing the slopes/chirp rates of the DFCW waveforms (based on LFM and PLFM waveforms) used as chips with the same complementary code pair results in good code sets with a zero-sidelobe region. It is also shown that a second good code set with a zero-sidelobe region could be constructed from the mates of the complementary code pair, while using the same DFCW waveforms as their chips. The cross-correlation between the two sets is shown to contain a zero-sidelobe region and an adjacent region of small cross-correlation sidelobes. Thus, the two sets are quasi-orthogonal and could be combined to form a good code set with twice the number of codes without affecting their cross-correlation properties. Or a better good code set with the same number codes could be constructed by choosing the best candidates form the two sets. Such code sets find utility in multiple input-multiple output (MIMO) radar applications.

 Artículos similares

       
 
Lei Sun, Weimin Shi, Junru Wang, Huimin Mao, Jiajia Tu and Luojun Wang    
Production scheduling in a knitting workshop is an important method to improve production efficiency, reduce costs and improve service. In order to achieve a reasonable allocation of parallel machines as well as cooperation between different machines wit... ver más
Revista: Applied Sciences

 
Peter M. Ritzler, Clemens K. Weiss and Bernhard C. Seyfang    
Due to the importance of process intensification, modeling of Annular Centrifugal Contactors (ACCs) is becoming of increasing interest. By the current state of scientific knowledge, universal modeling without high computing power of these complex apparat... ver más
Revista: ChemEngineering

 
Nicola Petacco and Paola Gualeni    
Intact stability represents one of the most important topics when addressing ship safety, and it is ruled by the IMO Intact Stability code, evaluating ship stability in a calm water scenario. However, the interest in ship stability in waves has increased... ver más

 
Sarat Chandra Mohapatra and C. Guedes Soares    
A hydroelastic model associated with the interaction between a surface wave and a floating circular structure connected with mooring lines in finite water depth is developed using BIEM. The BIEM solution is achieved using free surface Green?s function an... ver más

 
Xueting Pan, Honghao Yue, Shufeng Liu, Fei Yang, Yifan Lu and Gang Chen    
In this paper, a morphing aircraft with a deployable flared skirt is proposed, and the influence of the flare skirt on the static stability of hypersonic aircraft is studied. The theoretical model of static stability of slender aircraft is established, a... ver más
Revista: Aerospace