Inicio  /  Aerospace  /  Vol: 8 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Design and Development of an Experimental Setup of Electrically Powered Spinning Rotor Blades in Icing Wind Tunnel and Preliminary Testing with Surface Coatings as Hybrid Protection Solution

Eric Villeneuve    
Caroline Blackburn and Christophe Volat    

Resumen

In order to study ice protection systems for rotating blades, a new experimental setup has been developed at the Anti-Icing Materials International Laboratory (AMIL). This system consists of two small-scale rotating blades in a refrigerated icing wind tunnel where atmospheric icing can be simulated. Power is brought to the blades through a slip ring, through which the signals of the different sensors that are installed on the blades also pass. As demonstrated by the literature review, this new setup will address the need of small-scale wind tunnel testing on electrically powered rotating blades. To test the newly designed apparatus, preliminary experimentation is done on a hybrid ice protection system. Electrothermal protection is combined with different surface coatings to measure the impact of those coatings on the power consumption of the system. In anti-icing mode, the coatings tested did not reduce the power consumption on the system required to prevent ice from accumulating on the leading edge. The coatings however, due to their hydrophobic/superhydrophobic nature, reduced the power required to prevent runback ice accumulation when the leading edge was protected. One of the coatings did not allow any runback accumulation, limiting the power to protect the whole blades to the power required to protect solely the leading edge, resulting in a potential 40% power reduction for the power consumption of the system. In de-icing mode, the results with all the substrates tested showed similar power to achieve ice shedding from the blade. Since the coatings tested have a low icephobicity, it would be interesting to perform additional testing with icephobic coatings. Also, a small unheated zone at the root of the blade prevented complete ice shedding from the blade. A small part of the ice layer was left on the blade after testing, meaning that a cohesive break had to occur within the ice layer, and therefore impacting the results. Improvements to the setup will be done to remedy the situation. Those preliminary testing performed with the newly developed test setup have demonstrated the potential of this new device which will now allow, among other things, to measure heat transfer, force magnitudes, ice nucleation, and thermal equilibrium during ice accretion, with different innovative thermal protection systems (conductive coating, carbon nanotubes, impulse, etc.) as well as mechanical systems. The next step, following the improvements, is to measure forced convection on a thermal ice protection system with and without precipitation and to test mechanical ice protection systems.

 Artículos similares

       
 
He Hu, Junhua Chen, Jianhao Zhu, Yunze Yang and Han Zheng    
With the rapid development of the economy, it is imperative to improve the quality of training for operational and managerial talents in the railway industry. To address issues such as efficiency, safety, and cost in railway industry practical training, ... ver más
Revista: Information

 
Haibo Wang, Junsi Chen, Zhanxia Feng, Guangchao Du, Yuze Li, Chao Tang, Yang Zhang, Changhong He and Zongyu Chang    
Marine monitoring equipment such as Argo profiling buoys and underwater gliders are important devices for oceanographic research and marine resource exploration. In this study, a novel mobile buoy capable of vertical profiling motion like Argo profiling ... ver más

 
Hyun-Guk Kim, Dong-Geon Kim, Ryoon-Ho Do, Kyung-Rae Koo and Young-Joon Yu    
Revista: Applied Sciences

 
Ritesh Ghimire and Asokan Raji    
Revista: Applied Sciences

 
Qiankun Wang, Ke Zhu, Peiwen Guo, Jiaji Zhang and Zhihua Xiong    
Faced with the challenges of global climate change, zero-carbon buildings (ZCB) serve as a crucial means to achieve carbon peak and carbon neutrality goals, particularly in the development of tropical island regions. This study aims to establish a ZCB te... ver más
Revista: Applied Sciences