Inicio  /  Aerospace  /  Vol: 10 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Coverage Path Planning Method for Agricultural Spraying UAV in Arbitrary Polygon Area

Jiacheng Li    
Hanlin Sheng    
Jie Zhang and Haibo Zhang    

Resumen

In the coverage path planning (CPP) problem of an agricultural spraying UAV, a margin reduction algorithm was designed first to address special situations such as ditches and channels within the operational terrain. Regarding the particularity of a concave polygon area, an algorithm based on topology mapping was developed to judge the concave points of the concave polygon area, and the path with special concave points was scheduled. For the evaluation of the pesticide spraying mission, the flight distance and extra coverage ratio were the most appropriate optimization objectives. Therefore, this paper selected these two indicators to form a fitness function, then found the optimal operating heading angle of the mission after iterative optimization. Finally, the CPP for an agricultural spraying UAV in an arbitrary polygon area under the optimal heading angle was realized. The simulation and flight test results showed that the CPP method could significantly shorten the flight distance and reduce additional coverage, then avoid energy consumption and pesticide waste. In addition, the engineering practicability of the method was verified in this paper. This method can be popularized and widely used for an agricultural spraying UAV, which has great engineering application value.

 Artículos similares

       
 
Abhishek Phadke, F. Antonio Medrano, Tianxing Chu, Chandra N. Sekharan and Michael J. Starek    
UAV swarms have multiple real-world applications but operate in a dynamic environment where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should be resilient to disruptions to maintain the desired performance and produ... ver más
Revista: Aerospace

 
Bowen Xing, Xiao Wang, Liu Yang, Zhenchong Liu and Qingyun Wu    
A deep reinforcement learning method to achieve complete coverage path planning for an unmanned surface vehicle (USV) is proposed. This paper firstly models the USV and the workspace required for complete coverage. Then, for the full-coverage path planni... ver más

 
Yanzhuo Men, Yingying Liu, Yufei Ma, Ka Po Wong, Jin Yeu Tsou and Yuanzhi Zhang    
Satellites with low-to-medium spatial resolution face challenges in monitoring the early and receding stages of green tides, while those with high spatial resolution tend to reduce the monitoring frequency of such phenomena. This study aimed to observe t... ver más

 
Fethi Candan, Omer Faruk Dik, Tufan Kumbasar, Mahdi Mahfouf and Lyudmila Mihaylova    
This study presents the design and real-time applications of an Interval Type-2 Fuzzy PID (IT2-FPID) control system on an unmanned aerial vehicle (UAV) with a flexible cable-connected payload in comparison to the PID and Type-1 Fuzzy PID (T1-FPID) counte... ver más
Revista: Algorithms

 
Jia Song, Kai Zhao and Yang Liu    
The task assignment issue and the path planning problem of Multiple Unmanned Aerial Vehicles (Multi-UAV) are collectively referred to as the Mission Planning Problem (MPP). This review article provides an update on the progress of the MPP on Multi-UAV. F... ver más
Revista: Aerospace