Inicio  /  Aerospace  /  Vol: 9 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Prediction of Unsteady Aerodynamics of a Ducted Fan Unmanned Aerial Vehicle in Hovering

Hongming Cai    
Zhuoran Zhang and Shuanghou Deng    

Resumen

Recently, ducted fan unmanned aerial vehicles (UAVs) have attracted considerable attention due to their potential for application in both civil and military missions. Compared with free propellers, the presence of duct can in principle decrease the flow contraction after propeller, and gives the potential to fly efficiently with high security, compact structure, and low noise. In the present study, a ducted fan UAV is designed using the open source code OpenProp. The computational fluid dynamics (CFD) simulation model using sliding mesh technique is established and validated as a reliable tool for highly vortical flows by propeller thrust experiment. The effect of the duct, revolution speed, and distance between propellers on the aerodynamic characteristics of the ducted fan UAV is evaluated in detail. Results show that the unducted coaxial upper and lower propellers generate 3.8%, 4.3% more thrust than the unducted single propellers, respectively, and the unducted upper and lower propellers generate 55.9%, 34.9% more thrust than ducted propellers, respectively. The ducted fan UAV generates 5.7% more thrust and consumes 39.1% less power than the unducted coaxial propellers. The thrust of the ducted fan UAV increases first and then follows with a decreased tendency as the distance between propellers increases.

 Artículos similares

       
 
Mengzhen Wu, Xianghong Xu, Haochen Zhang, Rui Zhou and Jianshan Wang    
As a traditional numerical simulation method for pantograph?catenary interaction research, the pantograph?catenary finite element model cannot be applied to the real-time monitoring of pantograph?catenary contact force, and the computational cost require... ver más
Revista: Applied Sciences

 
Annie Rose Elizabeth, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna and Mondeep Borthakur    
Multiple applications in aerospace utilize pyrotechnic charges for their operation, and these charges are predominantly in the form of granules. One of the most used charges is boron potassium nitrate (BPN), and the present study focuses on mathematicall... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace

 
Nikolaos Bakas    
Function approximation is a fundamental process in a variety of problems in computational mechanics, structural engineering, as well as other domains that require the precise approximation of a phenomenon with an analytic function. This work demonstrates... ver más
Revista: Computation