Inicio  /  Aerospace  /  Vol: 10 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

The Influence of Thrust Chamber Structure Parameters on Regenerative Cooling Effect with Hydrogen Peroxide as Coolant in Liquid Rocket Engines

Chuang Zhou    
Nanjia Yu    
Shuwen Wang    
Shutao Han    
Haojie Gong    
Guobiao Cai and Jue Wang    

Resumen

Liquid rocket engines with hydrogen peroxide and kerosene have the advantages of high density specific impulse, high reliability, and no ignition system. At present, the cooling problem of hydrogen peroxide engines, especially with regenerative cooling, has been little explored. In this study, a realizable k-epsilon turbulence model, discrete phase model, eddy dissipation concept model, and 10-step 10-component reaction mechanism of kerosene with oxygen are used. The increased rib height of the regenerative cooling channel causes the inner wall temperature of the engine increases, the average temperature of the coolant outlet decreases slightly, and the coolant pressure decreases. The overall wall temperature decreases as the rib width of the regenerative cooling channel increases. However, in the nozzle throat area, the wall temperature increases, the average coolant outlet temperature decreases, and the coolant pressure drop increases. A decrease in the inner wall thickness of the regenerative cooling channel results in a significant decrease in the wall temperature and a small increase in the average coolant outlet temperature. These findings contribute to the further development of the engine with hydrogen peroxide and can guide the design of its regenerative cooling process.

 Artículos similares

       
 
Bowen Huang, Jinglei Xu and Kaikai Yu    
Compared to conventional aircraft, hypersonic aircraft place a greater emphasis on the integration of aircraft and engines to meet their high-performance requirements. The design challenges of the nozzle are evident in the requirement of a significant ar... ver más
Revista: Aerospace

 
Lei Mei, Wenhui Yan, Junwei Zhou and Weichao Shi    
Recent studies indicate that bow foil biomimetic systems can significantly improve ship propulsion in waves. In this paper, the DTMB 5415 ship model is taken as the object and a semi-active elastic flapping foil is proposed to install at its bow underwat... ver más

 
Shuo Liu, Zijing Yu, Tao Wang, Yifan Chen, Yu Zhang and Yong Cai    
In the traditional motion control method of an unmanned sailboat, the sail and rudder are divided into two independent controllers. The sail is used to obtain the thrust and the rudder is used to adjust the yaw angle. The traditional control method does ... ver más

 
Weimin Chen, Jiachen Ma, Jian Hu and Li Zhang    
Podded propulsion offers excellent maneuverability without the need for mechanically complex transmission systems. However, the hydrodynamic performance of podded propulsion under maneuvering conditions has not yet been adequately investigated. This stud... ver más

 
Chunmeng Jiang, Jinhua Lv, Lei Wan, Jianguo Wang, Bin He and Gongxing Wu    
The classic S-plane control method combines PD structure with fuzzy control theory, with the advantages of a simple control structure and fewer parameters to be adjusted. It has been proved as a practical method in an autonomous underwater vehicle (AUV) ... ver más