Inicio  /  Agronomy  /  Vol: 7 Núm: 2 Par: June (2017)  /  Artículo
ARTÍCULO
TITULO

Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

Travis Goron    
Jacob Nederend    
Greg Stewart    
Bill Deen and Manish Raizada    

Resumen

After uptake in cereal crops, nitrogen (N) is rapidly assimilated into glutamine (Gln) and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha-1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux) at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development) and NDVI (Normalized Difference Vegetation Index) measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

 Artículos similares

       
 
Xianxian Zhang, Junguo Bi, Weikang Wang, Donglai Sun, Huifeng Sun, Qingyu Bi, Cong Wang, Jining Zhang, Sheng Zhou and Lijun Luo    
Developing tailored emission reduction strategies and estimating their potential is crucial for achieving low-carbon rice production in a specific region, as well as for advancing China?s dual carbon goals in the agricultural sector. By utilizing water-s... ver más
Revista: Agronomy

 
Haining Wu, Shufang Chen, Zhipeng Huang, Tangwei Huang, Xiumei Tang, Liangqiong He, Zhong Li, Jun Xiong, Ruichun Zhong, Jing Jiang, Zhuqiang Han and Ronghua Tang    
The intercropping of peanuts and sugarcane is a sustainable planting model that deserves in-depth research. For this study, two variables, i.e., intercropping status (peanut monocropping or sugarcane/peanut intercropping) and the level of nitrogen fertil... ver más
Revista: Agronomy

 
Dafeng Hui, Avedananda Ray, Lovish Kasrija and Jaekedah Christian    
Microbial-driven processes, including nitrification and denitrification closely related to soil nitrous oxide (N2O) production, are orchestrated by a network of enzymes and genes such as amoA genes from ammonia-oxidizing bacteria (AOB) and archaea (AOA),... ver más
Revista: Agriculture

 
Zhaojuan Zhang, Binbin Cai, Yiling Guo, Tiancang Na and Yuchun Guo    
The biosynthesis of anthocyanins is influenced by external environmental conditions such as light, temperature, and nitrogen level, with nitrogen level being a key factor in anthocyanin synthesis and accumulation. Nitrogen level regulates the transcripti... ver más
Revista: Agriculture

 
Xiangjie Chang, Hao He, Liyang Cheng, Xiaojuan Yang, Shuai Li, Mengmeng Yu, Jifeng Zhang and Junhua Li    
In this study, we established a feasible fertilization programming method for wheat production by exploring the effects of the combined application of chemical and organic fertilizers on wheat yield, nutrient uptake, soil nutrient content, and fertilizer... ver más
Revista: Agronomy