ARTÍCULO
TITULO

Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

Jinsong Liu    
Edwin Thomas    
Lance Manuel    
D. Todd Griffith    
Kelley M. Ruehl and Matthew Barone    

Resumen

Over the past few decades, wind energy has emerged as an alternative to conventional power generation that is economical, environmentally friendly and, importantly, renewable. Specifically, offshore wind energy is being considered by a number of countries to harness the stronger and more consistent wind resource compared to that over land. To meet the projected ?20% energy from wind by 2030? scenario that was announced in 2006, 54 GW of added wind energy capacity need to come from offshore according to a National Renewable Energy Laboratory (NREL) study. In this study, we discuss the development of a semi-submersible floating offshore platform with a catenary mooring system to support a very large 13.2-MW wind turbine with 100-m blades. An iterative design process is applied to baseline models with Froude scaling in order to achieve preliminary static stability. Structural dynamic analyses are performed to investigate the performance of the new model using a finite element method approach for the tower and a boundary integral equation (panel) method for the platform. The steady-state response of the system under uniform wind and regular waves is first studied to evaluate the performance of the integrated system. Response amplitude operators (RAOs) are computed in the time domain using white-noise wave excitation; this serves to highlight nonlinear, as well as dynamic characteristics of the system. Finally, selected design load cases (DLCs) and the stochastic dynamic response of the system are studied to assess the global performance for sea states defined by wind fields with turbulence and long-crested irregular waves.

 Artículos similares

       
 
Tiankai Yang, Zhenzhong Sun, Yongliang Liang and Lichuan Liu    
With the rapid development of global trade, a large number of goods and resources are imported and exported via seaports. Multiple thermal loads and renewable energy merge into seaports, making the energy supply and demand structure increasingly complex.... ver más

 
Taehoon Lee, Byungjin Lee and Sangkyung Sung    
This study proposes an enhanced integration algorithm that combines the magnetic field-based positioning system (MPS?Magnetic Pose Estimation System) with an inertial system with the advantage of an invariant filter structure. Specifically, to mitigate t... ver más
Revista: Aerospace

 
Jianhua Gao, Su Zhou, Yanda Lu and Wei Shen    
The multi-stack fuel cell system proposed in this paper can be applied to high-power generation, transport, and other engineering fields.
Revista: Applied Sciences

 
Alireza Kakoee, Jacek Hunicz and Maciej Mikulski    
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression igniti... ver más

 
Hanwen Yu, Guiyuan Zheng, Yandong Liu, Jiajia Zhao, Guozhao Wei and Hongkui Jiang    
The potential applications of the dual linear-motor differential-drive system and the numerical analysis results are applicable to high-end equipment fields like suspensions, robotics, optoelectronics, powertrain, integrated electronics, national defense... ver más
Revista: Applied Sciences