ARTÍCULO
TITULO

Observed Sea-Level Changes along the Norwegian Coast

Kristian Breili    
Matthew J. R. Simpson and Jan Even Øie Nilsen    

Resumen

Norway?s national sea level observing system consists of an extensive array of tide gauges, permanent GNSS stations, and lines of repeated levelling. Here, we make use of this observation system to calculate relative sea-level rates and rates corrected for glacial isostatic adjustment (GIA) along the Norwegian coast for three different periods, i.e., 1960 to 2010, 1984 to 2014, and 1993 to 2016. For all periods, the relative sea-level rates show considerable spatial variations that are largely due to differences in vertical land motion due to GIA. The variation is reduced by applying corrections for vertical land motion and associated gravitational effects on sea level. For 1960 to 2010 and 1984 to 2014, the coastal average GIA-corrected rates for Norway are 2.0 ± 0.6 mm/year and 2.2 ± 0.6 mm/year, respectively. This is close to the rate of global sea-level rise for the same periods. For the most recent period, 1993 to 2016, the GIA-corrected coastal average is 3.5 ± 0.6 mm/year and 3.2 ± 0.6 mm/year with and without inverse barometer (IB) corrections, respectively, which is significantly higher than for the two earlier periods. For 1993 to 2016, the coastal average IB-corrected rates show broad agreement with two independent sets of altimetry. This suggests that there is no systematic error in the vertical land motion corrections applied to the tide-gauge data. At the same time, altimetry does not capture the spatial variation identified in the tide-gauge records. This could be an effect of using altimetry observations off the coast instead of directly at each tide gauge. Finally, we note that, owing to natural variability in the climate system, our estimates are highly sensitive to the selected study period. For example, using a 30-year moving window, we find that the estimated rates may change by up to 1 mm/year when shifting the start epoch by only one year.

 Artículos similares

       
 
Nestoras Papadopoulos and Vassilis Gikas    
Tide gauge recordings furnish the longest and almost the most continuous data source of sea level monitoring. Traditionally, they are collected using tide gauge instrumentation fixed at seaport locations to provide a time series of sea level estimates re... ver más

 
Eric E. Grossman, Babak Tehranirad, Cornelis M. Nederhoff, Sean C. Crosby, Andrew W. Stevens, Nathan R. Van Arendonk, Daniel J. Nowacki, Li H. Erikson and Patrick L. Barnard    
Extreme water-level recurrence estimates for a complex estuary using a high-resolution 2D model and a new method for estimating remotely generated sea level anomalies (SLAs) at the model boundary have been developed. The hydrodynamic model accurately res... ver más
Revista: Water

 
Francisca Caeiro-Gonçalves, Ana Bio, Isabel Iglesias and Paulo Avilez-Valente    
Sandspits are important natural defences against the effects of storm events in estuarine regions, and their temporal and spatial dynamics are related to river flow, wave energy, and wind action. Understanding the impact of extreme wave events on the mor... ver más
Revista: Water

 
Tyler Donahue, Peter Krekorian, Luke Swift, Malcolm L. Spaulding, Chris Baxter and Craig Swanson    
The STORMTOOLS Coastal Environmental Risk Index (CERI) has historically been used to assess the damage to residential and commercial structures from coastal flooding, including the effects of sea level rise (SLR) in RI. In the present study, CERI was ext... ver más

 
Vasileios A. Tzanakakis, Aikaterini Pavlaki, Emmanouil Lekkas, Emmanouil A. Varouchakis, Nikolaos V. Paranychianakis, Giorgos Fasarakis and Andreas N. Angelakis    
Sfakia is a mountainous municipality located in the southwestern area of the island of Crete, including the southern part of the Lefka Ori Mountain, with an elevation ranging from sea level to over 2400 m. The mountainous massif mainly consists of carbon... ver más
Revista: Water