ARTÍCULO
TITULO

Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review

Zhenhui Du    
Shuai Zhang    
Jinyi Li    
Nan Gao and Kebin Tong    

Resumen

The vast majority of gaseous chemical substances exhibit fundamental rovibrational absorption bands in the mid-infrared spectral region (2.5–25 μm), and the absorption of light by these fundamental bands provides a nearly universal means for their detection. A main feature of optical techniques is the non-intrusive in situ detection of trace gases. We reviewed primarily mid-infrared tunable laser-based broadband absorption spectroscopy for trace gas detection, focusing on 2008–2018. The scope of this paper is to discuss recent developments of system configuration, tunable lasers, detectors, broadband spectroscopic techniques, and their applications for sensitive, selective, and quantitative trace gas detection.

 Artículos similares