Inicio  /  Water  /  Vol: 9 Núm: 4 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Understanding and Control of Biopolymer Fouling in Ultrafiltration of Different Water Types

Xing Zheng    
Frederik Zietzschmann    
Stephan Plume    
Hendrik Paar    
Mathias Ernst    
Zi Wang    
Martin Jekel    

Resumen

The present work focuses on understanding and control of biopolymer fouling in ultrafiltration of a typical surface water and nearby secondary effluent for direct and indirect portable use. Characterization results show that both kinds of biopolymers are of similar molecular weight. Longer than one year water quality monitoring results show that the C/N ratio in the secondary effluent biopolymers was relatively constant at around 4.8, while that in the surface water macromolecules fluctuated at around 6.9. Under a similar mass load, the investigated secondary effluent biopolymers lead to hydraulic resistance slightly higher than that caused by filtering surface water macromolecules; however, the correspondingly formed fouling is significantly less reversible by hydraulic backwashing. The quantity of the nitrogenous biopolymers in the secondary effluent demonstrated a strong correlation with the extent of the irreversible fouling in ultrafiltration (UF), while that from the surface water did not. In membrane fouling cleaning tests, certain detergent demonstrated high efficiency in removing the irreversible fouling after UF of the secondary effluent, but presented no effect in eliminating fouling caused by the surface water foulants. In-line coagulation using FeCl3 prior to UF was shown as an effective fouling control method, but the effect depends heavily on the type of feed water.

 Artículos similares

       
 
Néstor J. Jarque-Bou, Margarita Vergara and Joaquín L. Sancho-Bru    
Revista: Applied Sciences

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace

 
Yibei Guo, Yijiang Pang, Joseph Lyons, Michael Lewis, Katia Sycara and Rui Liu    
Due to the complexity of real-world deployments, a robot swarm is required to dynamically respond to tasks such as tracking multiple vehicles and continuously searching for victims. Frequent task assignments eliminate the need for system calibration time... ver más
Revista: AI

 
Yasuhiro Akiyama, Shuto Yamada, Shogo Okamoto and Yoji Yamada    
The simulation of fall plays a critical role in estimating injuries caused by fall. However, implementing human fall mitigation motions on a simulator proves challenging due to the complexity and variability of fall movement. Our simulator estimates fall... ver más
Revista: Applied Sciences

 
Erman Ozpolat and Arif Gulten    
This paper explores the synchronization and implementation of a novel hyperchaotic system using an adaptive observer. Hyperchaotic systems, known for possessing a greater number of positive Lyapunov exponents compared to chaotic systems, present unique c... ver más
Revista: Applied Sciences